skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of large A-site cations on electron–vibrational interactions in 2D halide perovskites: Ab initio quantum dynamics
Using ab initio nonadiabatic molecular dynamics, we study the effect of large A-site cations on nonradiative electron–hole recombination in two-dimensional Ruddlesden–Popper perovskites HA2APb2I7, HA = n-hexylammonium, A = methylammonium (MA), or guanidinium (GA). The steric hindrance created by large GA cations distorts and stiffens the inorganic Pb–I lattice, reduces thermal structural fluctuations, and maintains the delocalization of electrons and holes at ambient and elevated temperatures. The delocalized charges interact more strongly in the GA system than in the MA system, and the charge recombination is accelerated. In contrast, replacement of only some MA cations with GA enhances disorder and increases charge lifetime, as seen in three-dimensional perovskites. This study highlights the key influence of structural fluctuations and disorder on the properties of charge carriers in metal halide perovskites, providing guidance for tuning materials’ optoelectronic performance.  more » « less
Award ID(s):
2154367
PAR ID:
10583471
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
11
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grain boundaries (GBs) in perovskite solar cells and optoelectronic devices are widely regarded as detrimental defects that accelerate charge and energy losses through nonradiative carrier trapping and recombination, but the mechanism is still under debate owing to the diversity of GB configurations and behaviors. We combine ab initio electronic structure and machine learning force field to investigate evolution of the geometric and electronic structure of a CsPbBr 3 GB on a nanosecond timescale, which is comparable with the carrier recombination time. We demonstrate that the GB slides spontaneously within a few picoseconds increasing the band gap. Subsequent structural oscillations dynamically produce midgap trap states through Pb–Pb interactions across the GB. After several hundred picoseconds, structural distortions start to occur, increasing the occurrence of deep midgap states. We identify a distinct correlation of the average Pb–Pb distance and fluctuations in the ion coordination numbers with the appearance of the midgap states. Suppressing GB distortions through annealing and breaking up Pb–Pb dimers by passivation can efficiently alleviate the detrimental effects of GBs in perovskites. The study provides new insights into passivation of the detrimental GB defects, and demonstrates that structural and charge carrier dynamics in perovskites are intimately coupled. 
    more » « less
  2. Abstract 2D perovskites are relatively stable but possess poor charge transport compared to 3D perovskites. To boost charge transport, novel 2D perovskites mixed with 3D perovskites are developed, where Pb2+are partially substituted by the heterovalent neodymium cations (Nd3+) within both 2D and 3D perovskites (termed Nd3+‐substituted 2D:3D mixed perovskites. Systematical studies reveal that the Nd3+‐substituted 2D:3D mixed perovskites possess larger crystals, superior crystallinity, suppressed non‐radiative charge recombination, and enhanced and balanced charge transport compared to the 2D:3D mixed perovskites. As a result, perovskite photovoltaics based on the Nd3+‐substituted 2D:3D mixed perovskites exhibit a power conversion efficiency of 22.11%, a photoresponsibility of over 700 mA W−1, a photodetectivity of 4.29 × 1014 cm Hz1/2 W−1, a linear dynamic range of 165 dB at room temperature, and dramatically boosted stability. These results demonstrate that, a facile way is developed to realize high‐performance perovskite photovoltaics through partially heterovalent substituted Pb2+by Nd3+within 2D:3D mixed perovskites. 
    more » « less
  3. Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs. 
    more » « less
  4. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices. 
    more » « less
  5. Low-dimensional organic/inorganic hybrid perovskites (OIHPs) are a promising class of materials with a wide range of potential applications in optoelectronics and other fields since these materials can synergistically combine individual features of organic molecules and inorganics into unique properties. Non-covalent interactions are commonly observed in OIHPs, in particular, π-effect interactions between the organic cations. Such non-covalent interactions can significantly influence important properties of the low-dimensional OIHPs, including dielectric confinement, bandgap, photoluminescence, quantum efficiency, charge mobility, trap density, stability, and chirality. This perspective reviews recent studies of non-covalent interactions involving the π systems of organic cations in low-dimensional OIHPs. The analysis of crystal structures of low-dimensional OIHPs offers significant insight into understanding such non-covalent interactions and their impacts on specific properties of these OIHPs. The developed structure–property relationships can be used to engineer non-covalent interactions in low-dimensional OIHPs for applications. 
    more » « less