In this study, the growth of scandium nitride (100) single crystals with high electron mobility and high thermal conductivity was demonstrated by physical vapor transport (PVT). Single crystals were grown in the temperature range of 1900 C–2140 C under a nitrogen pressure between 15 and 20 Torr. Single crystal tungsten (100) was used as a nearly lattice constant matched seed crystal. Growth for 20 days resulted in a 2mm thick crystal. Hall-effect measurements revealed that the layers were n-type with a 300 K electron concentration and a mobility of 2.17 x 1021 cm-3 and 73 cm2/V s, respectively. Consequently, this ScN crystal had a low electrical resistivity, 3.94 x 10- 5 Xcm. The thermal conductivity was in the range of 51–56W/mK, three times higher than those in previous reports for ScN thin films. This study demonstrates the viability of the PVT crystal growth method for producing high quality bulk scandium nitride single crystals.
more »
« less
Engineering Order in the Lattice of LiNbO3 Crystal Written in Glass by Femtosecond Laser
Erbium doped single crystals of lithium niobate were grown within the bulk of 0.075 Er2O3 – 37 Li2O – 37 Nb2O5 – 26 SiO2 glass using a femtosecond pulsed laser. Combined excitation emission spectroscopy was used to show incorporation of erbium into the laser written crystal lattice. Laser power and scanning speed were held constant at optimized values, while bulk sample temperature was systematically varied to study the impact on the crystal growth. Using electron backscatter diffraction to study the transverse cross-sections of grown crystals, control over the lattice rotation rates and crystal size were realized. Unlike changing other parameters, a range of temperatures were found to have substantial impacts on crystal growth, without inhibiting the ability to maintain single crystal formation over long distances.
more »
« less
- Award ID(s):
- 2123131
- PAR ID:
- 10583497
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Optical Materials
- Volume:
- 152
- Issue:
- C
- ISSN:
- 0925-3467
- Page Range / eLocation ID:
- 115514
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epitaxial growth of complex oxides on large-area wafers, such as sapphire and silicon, represents a key step toward scalable oxide device production. Solid phase epitaxy allows the synthesis of γ-Al2O3 on α-Al2O3 and provides a template with a matched lattice constant and appropriate cubic symmetry for subsequent heteroepitaxial growth of perovskite complex oxides. Nb-doped SrTiO3 thin films were deposited epitaxially on (111)-oriented γ-Al2O3 intermediate layers on (0001) c-axis-oriented sapphire α-Al2O3 crystals using pulsed laser deposition. The Nb:SrTiO3 thin films with a thickness of 53 nm, grown at 700 °C on γ-Al2O3, reached fully relaxed lattice parameters and were epitaxially oriented with respect to the substrate. Nb:SrTiO3 layers deposited using identical deposition conditions directly on α-Al2O3, without the γ-Al2O3 intermediate layer, were polycrystalline. The sheet conductivity of Nb:SrTiO3 grown on γ-Al2O3/α-Al2O3 is more than ten times higher than that of Nb:SrTiO3 grown directly on α-Al2O3 without the γ-Al2O3 layer. The results point to new directions for the integration of (111)-oriented pseudocubic perovskite complex oxides and the integration of epitaxial complex oxides over larger areas using α-Al2O3 single-crystal substrates.more » « less
-
null (Ed.)For organic semiconductor crystals exhibiting anisotropic charge transport along different crystallographic directions, nanoconfinement is a powerful strategy to control crystal orientation by aligning the fast crystallographic growth direction(s) with the unconfined axis(es) of nanoconfining scaffolds. Here, design rules are presented to relate crystal morphology, scaffold geometry, and orientation control in solution-processed small-molecule crystals. Specifically, organic semiconductor triisopropylsilylethynyl pyranthrene needle-like crystals with a dimensionality of n = 1 and perylene platelike crystals with n = 2 were grown from solution within nanoconfining scaffolds comprising cylindrical nanopores with a dimensionality of m = 1, representing one unconfined dimension along the cylinder axis, and those comprising nanopillar arrays with a dimensionality of m = 2. For m = n systems, native crystal growth habits were preserved while the crystal orientation in n = m direction(s) was dictated by the geometry of the scaffold. For n ≠ m systems, on the other hand, orientation control was restricted within a single plane, either parallel or perpendicular to the substrate surface. Intriguingly, control over crystal shape was also observed for perylene crystals grown in cylindrical nanopores ( n > m ). Within the nanopores, crystal growth was restricted along a single direction to form a needle-like morphology. Once growth proceeded above the scaffold surface, the crystals adopted their native growth habit to form asymmetric T-shaped single crystals with concave corners. These findings suggest that nanoporous scaffolds with spatially-varying dimensionalities can be used to grow single crystals of complex shapes.more » « less
-
Ultrafast lattice deformation of tens to hundreds of nanometer thick metallic crystals, after femtosecond laser excitation, was measured directly using 8.04 keV subpicosecond x-ray and 59 keV femtosecond electron pulses. Coherent phonons were generated in both single crystal and polycrystalline films. Lattice compression was observed within the first few picoseconds after laser irradiation in single crystal aluminum, which was attributed to the generation of a blast force and the propagation of elastic waves. The different time scales of lattice heating for tens and hundreds nanometer thick films are clearly distinguished by electron and x-ray pulse diffraction. The electron and lattice heating due to ultrafast deposition of photon energy was simulated using the two-temperature model and the results agreed with experimental observations. This study demonstrates that the combination of two complementary ultrafast time-resolved methods, ultrafast x-ray, and electron diffraction will provide a panoramic picture of the transient structural changes in crystals.more » « less
-
null (Ed.)Manganese doped inorganic halide perovskites continue to be of current interest for applications in light emitting devices and down-converters in solar cells. In this work we prepared Mn doped CsPbCl3 (Mn: CPC) bulk crystals and nanoparticles (NPs) and compared their emission properties. Bulk crystals were grown from the melt by vertical Bridgman technique and NPs were synthesized using a microwave assisted method. Under ultraviolet excitation at 350 nm, bulk crystal and NPs exhibited a broad orange emission centered in the ~600 nm range at room temperature. The broadbandemission was assigned to the intra-3d transition 4T1 → 6A1 of Mn2+ ions incorporated in the CPC host lattice. The Mn2+emission lifetimes were nearly exponential with values of 1.1 ms for NPs and 0.7 ms for the bulk crystal. NPs also showed exciton emission peaking at ~402 nm, whereas the bulk crystal exhibited no emission near the band-edge. Instead, the bulk material revealed a weak below-gap emission in the 450-550 nm region suggesting the existence of defect states. The excitation spectra for the orange Mn2+ emission from NPs and bulk crystals of Mn: CPC were significantly different indicating distinct excitation pathways. The excitation spectrum of the orange Mn2+ emission from NPs showed excitonic structure similar to the absorption spectrum suggesting an efficient energy transfer from excitons to Mn2+ ions. In contrast, UV excitation was less efficient for the bulk crystal and the excitation was dominated by below-gap excitation bands centered at 427 and 500 nm.more » « less
An official website of the United States government

