skip to main content

Title: Properties of bulk scandium nitride crystals grown by physical vapor transport
In this study, the growth of scandium nitride (100) single crystals with high electron mobility and high thermal conductivity was demonstrated by physical vapor transport (PVT). Single crystals were grown in the temperature range of 1900 C–2140 C under a nitrogen pressure between 15 and 20 Torr. Single crystal tungsten (100) was used as a nearly lattice constant matched seed crystal. Growth for 20 days resulted in a 2mm thick crystal. Hall-effect measurements revealed that the layers were n-type with a 300 K electron concentration and a mobility of 2.17 x 1021 cm-3 and 73 cm2/V s, respectively. Consequently, this ScN crystal had a low electrical resistivity, 3.94 x 10- 5 Xcm. The thermal conductivity was in the range of 51–56W/mK, three times higher than those in previous reports for ScN thin films. This study demonstrates the viability of the PVT crystal growth method for producing high quality bulk scandium nitride single crystals.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied physics letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scandium nitride (ScN) has recently attracted much attention for its potential applications in thermoelectric energy conversion, as a semiconductor in epitaxial metal/semiconductor superlattices, as a substrate for GaN growth, and alloying it with AlN for 5G technology. This study was undertaken to better understand its stoichiometry and electronic structure. ScN (100) single crystals 2 mm thick were grown on a single crystal tungsten (100) substrate by a physical vapor transport method over a temperature range of 1900–2000 °C and a pressure of 20 Torr. The core level spectra of Sc 2p3/2,1/2 and N 1s were obtained by x-ray photoelectron spectroscopy (XPS). The XPS core levels were shifted by 1.1 eV toward higher values as the [Sc]:[N] ratio varied from 1.4 at 1900 °C to ∼1.0 at 2000 °C due to the higher binding energies in stoichiometric ScN. Angle-resolved photoemission spectroscopy measurements confirmed that ScN has an indirect bandgap of ∼1.2 eV.

    more » « less
  2. Due to their favorable electromechanical properties, such as high sound velocity, low dielectric permittivity and high electromechanical coupling, Aluminum Nitride (AlN) and Aluminum Scandium Nitride (Al1−xScxN) thin films have achieved widespread application in radio frequency (RF) acoustic devices. The resistance to etching at high scandium alloying, however, has inhibited the realization of devices able to exploit the highest electromechanical coupling coefficients. In this work, we investigated the vertical and lateral etch rates of sputtered AlN and Al1−xScxN with Sc concentration x ranging from 0 to 0.42 in aqueous potassium hydroxide (KOH). Etch rates and the sidewall angles were reported at different temperatures and KOH concentrations. We found that the trends of the etch rate were unanimous: while the vertical etch rate decreases with increasing Sc alloying, the lateral etch rate exhibits a V-shaped transition with a minimum etch rate at x = 0.125. By performing an etch on an 800 nm thick Al0.875Sc0.125N film with 10 wt% KOH at 65 °C for 20 min, a vertical sidewall was formed by exploiting the ratio of the 1011¯ planes and 11¯00 planes etch rates. This method does not require preliminary processing and is potentially beneficial for the fabrication of lamb wave resonators (LWRs) or other microelectromechanical systems (MEMS) structures, laser mirrors and Ultraviolet Light-Emitting Diodes (UV-LEDs). It was demonstrated that the sidewall angle tracks the trajectory that follows the 1¯212¯ of the hexagonal crystal structure when different c/a ratios were considered for elevated Sc alloying levels, which may be used as a convenient tool for structure/composition analysis. 
    more » « less
  3. Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers. 
    more » « less
  4. Abstract

    The lattice thermal conductivity (κph) of metals and semimetals is limited by phonon‐phonon scattering at high temperatures and by electron‐phonon scattering at low temperatures or in some systems with weak phonon‐phonon scattering. Following the demonstration of a phonon band engineering approach to achieve an unusually high κphin semiconducting cubic‐boron arsenide (c‐BAs), recent theories have predicted ultrahigh κphof the semimetal tantalum nitride in the θ‐phase (θ‐TaN) with hexagonal tungsten carbide (WC) structure due to the combination of a small electron density of states near the Fermi level and a large phonon band gap, which suppress electron‐phonon and three‐phonon scattering, respectively. Here, measurements on the thermal and electrical transport properties of polycrystalline θ‐TaN converted from the ε phase via high‐pressure synthesis are reported. The measured thermal conductivity of the θ‐TaN samples shows weak temperature dependence above 200 K and reaches up to 90 Wm−1K−1, one order of magnitude higher than values reported for polycrystalline ε‐TaN and δ‐TaN thin films. These results agree with theoretical calculations that account for phonon scattering by 100 nm‐level grains and suggest κphincrease above the 249 Wm−1K−1value predicted for single‐crystal WC when the grain size of θ‐TaN is increased above 400 nm.

    more » « less
  5. Abstract

    Room temperature semiconductor detector (RTSD) materials for γ‐ray and X‐ray radiation are in great demand for the nonproliferation of nuclear materials as well as for biomedical imaging applications. Halide perovskites have attracted great attention as emerging and promising RTSD materials. In this contribution, the material synthesis, purification, crystal growth, crystal structure, photoluminescence properties, ionizing radiation detection performance, and electronic structure of the inorganic halide perovskitoid compound TlPbI3are reported on. This compound crystallizes in the ABX3non‐perovskite crystal structure with a high density ofd = 6.488 g·cm–3, has a wide bandgap of 2.25 eV, and melts congruently at a low temperature of 360 °C without phase transitions, which allows for facile growth of high quality crystals with few thermally‐activated defects. High‐quality TlPbI3single crystals of centimeter‐size are grown using the vertical Bridgman method using purified raw materials. A high electrical resistivity of ≈1012 Ω·cm is readily obtainable, and detectors made of TlPbI3single crystals are highly photoresponsive to Ag KαX‐rays (22.4 keV), and detects 122 keV γ‐rays from57Co radiation source. The electron mobility‐lifetime productµeτewas estimated at 1.8 × 10–5cm2·V–1. A high relative static dielectric constant of 35.0 indicates strong capability in screening carrier scattering and charged defects in TlPbI3.

    more » « less