skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Properties of bulk scandium nitride crystals grown by physical vapor transport
In this study, the growth of scandium nitride (100) single crystals with high electron mobility and high thermal conductivity was demonstrated by physical vapor transport (PVT). Single crystals were grown in the temperature range of 1900 C–2140 C under a nitrogen pressure between 15 and 20 Torr. Single crystal tungsten (100) was used as a nearly lattice constant matched seed crystal. Growth for 20 days resulted in a 2mm thick crystal. Hall-effect measurements revealed that the layers were n-type with a 300 K electron concentration and a mobility of 2.17 x 1021 cm-3 and 73 cm2/V s, respectively. Consequently, this ScN crystal had a low electrical resistivity, 3.94 x 10- 5 Xcm. The thermal conductivity was in the range of 51–56W/mK, three times higher than those in previous reports for ScN thin films. This study demonstrates the viability of the PVT crystal growth method for producing high quality bulk scandium nitride single crystals.  more » « less
Award ID(s):
1800130
PAR ID:
10165354
Author(s) / Creator(s):
Date Published:
Journal Name:
Applied physics letters
Volume:
116
ISSN:
1077-3118
Page Range / eLocation ID:
132103-132106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unlike naturally occurring oxide crystals such as ruby and gemstones, there are no naturally occurring nitride crystals because the triple bond of the nitrogen molecule is one of the strongest bonds in nature. Here, we report that when the transition metal scandium is subjected to molecular nitrogen, it self-catalyzes to break the nitrogen triple bond to form highly crystalline layers of ScN, a semiconductor. This reaction proceeds even at room temperature. Self-activated ScN films have a twin cubic crystal structure, atomic layering, and electronic and optical properties comparable to plasma-based methods. We extend our research to showcase Sc’s scavenging effect and demonstrate self-activated ScN growth under various growth conditions and on technologically significant substrates, such as 6H–SiC, AlN, and GaN. Ab initio calculations elucidate an energetically efficient pathway for the self-activated growth of crystalline ScN films from molecular N2. The findings open a new pathway to ultralow-energy synthesis of crystalline nitride semiconductor layers and beyond. 
    more » « less
  2. Due to their favorable electromechanical properties, such as high sound velocity, low dielectric permittivity and high electromechanical coupling, Aluminum Nitride (AlN) and Aluminum Scandium Nitride (Al1−xScxN) thin films have achieved widespread application in radio frequency (RF) acoustic devices. The resistance to etching at high scandium alloying, however, has inhibited the realization of devices able to exploit the highest electromechanical coupling coefficients. In this work, we investigated the vertical and lateral etch rates of sputtered AlN and Al1−xScxN with Sc concentration x ranging from 0 to 0.42 in aqueous potassium hydroxide (KOH). Etch rates and the sidewall angles were reported at different temperatures and KOH concentrations. We found that the trends of the etch rate were unanimous: while the vertical etch rate decreases with increasing Sc alloying, the lateral etch rate exhibits a V-shaped transition with a minimum etch rate at x = 0.125. By performing an etch on an 800 nm thick Al0.875Sc0.125N film with 10 wt% KOH at 65 °C for 20 min, a vertical sidewall was formed by exploiting the ratio of the 1011¯ planes and 11¯00 planes etch rates. This method does not require preliminary processing and is potentially beneficial for the fabrication of lamb wave resonators (LWRs) or other microelectromechanical systems (MEMS) structures, laser mirrors and Ultraviolet Light-Emitting Diodes (UV-LEDs). It was demonstrated that the sidewall angle tracks the trajectory that follows the 1¯212¯ of the hexagonal crystal structure when different c/a ratios were considered for elevated Sc alloying levels, which may be used as a convenient tool for structure/composition analysis. 
    more » « less
  3. Abstract The state‐of‐the‐art magnetic tunnel junction, a cornerstone of spintronic devices and circuits, uses a magnesium oxide tunnel barrier that provides a uniquely large tunnel magnetoresistance at room temperature. However, the wide bandgap and band alignment of magnesium oxide‐iron systems increases the resistance‐area product and creates variability and breakdown challenges. Here, the authors study using first principles narrower‐bandgap scandium nitride (ScN) transport properties in magnetoresistive junctions in comparison to magnesium oxide. The results show a high magnetoresistance in Fe/ScN/Fe via Δ1and symmetry filtering with low wave function decay rates, suggesting scandium nitride could be a new barrier material for spintronic devices. 
    more » « less
  4. Single crystals of the quaternary chalcogenide BaCuGdTe 3 were obtained by direct reaction of elements allowing for a complete investigation of the intrinsic electrical and thermal properties of this previously uninvestigated material. The structure was investigated by high-resolution single-crystal synchrotron X-ray diffraction, revealing an orthorhombic crystal structure with the space group Cmcm. Although recently identified as a semiconductor suitable for thermoelectric applications from theoretical analyses, our electrical resistivity and Seebeck coefficient measurements show metallic conduction, the latter revealing strong phonon-drag. Temperature dependent hole mobility reveals dominant acoustic phonon scattering. Heat capacity data reveal a Debye temperature of 183 K and a very high density of states at the Fermi level, the latter confirming the metallic nature of this composition. Thermal conductivity is relatively high with Umklapp processes dominating thermal transport above the Debye temperature. The findings in this work lay the foundation for a more detailed understanding of the physical properties of this and similar multinary chalcogenide materials, and is part of the continuing effort in investigating quaternary chalcogenide materials and their suitability for use in technological applications. 
    more » « less
  5. Erbium doped single crystals of lithium niobate were grown within the bulk of 0.075 Er2O3 – 37 Li2O – 37 Nb2O5 – 26 SiO2 glass using a femtosecond pulsed laser. Combined excitation emission spectroscopy was used to show incorporation of erbium into the laser written crystal lattice. Laser power and scanning speed were held constant at optimized values, while bulk sample temperature was systematically varied to study the impact on the crystal growth. Using electron backscatter diffraction to study the transverse cross-sections of grown crystals, control over the lattice rotation rates and crystal size were realized. Unlike changing other parameters, a range of temperatures were found to have substantial impacts on crystal growth, without inhibiting the ability to maintain single crystal formation over long distances. 
    more » « less