skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 29, 2025

Title: A stochastic gravitational wave background in LISA from unresolved white dwarf binaries in the Large Magellanic Cloud
ABSTRACT The Laser Interferometer Space Antenna (LISA) is expected to detect a wide variety of gravitational wave sources in the mHz band. Some of these signals will elude individual detection, instead contributing as confusion noise to one of several stochastic gravitational-wave backgrounds (SGWBs) – notably including the ‘Galactic foreground’, a loud signal resulting from the superposition of millions of unresolved double white dwarf binaries (DWDs) in the Milky Way. It is possible that similar, weaker SGWBs will be detectable from other DWD populations in the local Universe, including the Large Magellanic Cloud (LMC). We use the Bayesian LISA Inference Package (blip) to investigate the possibility of an anisotropic SGWB generated by unresolved DWDs in the LMC. To do so, we compute the LMC SGWB from a realistic DWD population generated via binary population synthesis, simulate 4 years of time-domain data with blip comprised of stochastic contributions from the LMC SGWB and the LISA detector noise, and analyse this data with blip’s spherical harmonic anisotropic SGWB search. We also consider the case of spectral separation from the Galactic foreground. We present the results of these analyses and show, for the first time, that the unresolved DWDs in the LMC will comprise a significant SGWB for LISA.  more » « less
Award ID(s):
2049645
PAR ID:
10583550
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
531
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2642 to 2652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the sensitivity of the Laser Interferometer Space Antenna (LISA) to the anisotropies of the Stochastic Gravitational Wave Background (SGWB). We first discussthe main astrophysical and cosmological sources of SGWB which are characterized by anisotropies in the GW energy density, and we build a Signal-to-Noise estimator to quantify the sensitivity of LISA to different multipoles. We then perform a Fisher matrix analysis of the prospects of detectability of anisotropic features with LISA for individual multipoles, focusing on a SGWB with a power-law frequency profile. We compute the noise angular spectrum taking into account the specific scan strategy of the LISA detector. We analyze the case of the kinematic dipole and quadrupole generated by Doppler boosting an isotropic SGWB. We find that β Ω GW ∼ 2 × 10 -11 is required to observe a dipolar signal with LISA. The detector response to the quadrupole has a factor ∼ 10 3 β relative to that of the dipole. The characterization of the anisotropies, both from a theoretical perspective and from a map-making point of view, allows us to extract information that can be used to understand the origin of the SGWB, and to discriminate among distinct superimposed SGWB sources. 
    more » « less
  2. Abstract Identifying the anisotropies in a cosmologically sourced stochastic gravitational wave background (SGWB) would be of significance in shedding light on the nature of primordial inhomogeneities.For example, if SGWB carries isocurvature fluctuations, it would provide evidence for a multi-field inflationary origin of these inhomogeneities.However, this is challenging in practice due to finite detector sensitivity and also the presence of the astrophysical foregrounds that can compete with the cosmological signal.In this work, we explore the prospects for measuring cosmological SGWB anisotropies in the presence of an astrophysical counterpart and detector noise.To illustrate the main idea, we perform a Fisher analysis using a well-motivated cosmological SGWB template corresponding to a first order phase transition,and an astrophysical SGWB template corresponding to extra-galactic binary mergers, and compute the uncertainty with which various parameters characterizing the isotropic and anisotropic components can be extracted.We also discuss some subtleties and caveats involving shot noise in the astrophysical foreground.Overall, we show that upcoming experiments, e.g., LISA, Taiji, Einstein Telescope, Cosmic Explorer, and BBO, can all be effective in discovering plausible anisotropic cosmological SGWBs. 
    more » « less
  3. null (Ed.)
    ABSTRACT Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo have recently published the upper limit measurement of persistent directional stochastic gravitational-wave background (SGWB) based on data from their first and second observing runs. In this paper, we investigate whether a correlation exists between this maximal likelihood SGWB map and the electromagnetic (EM) tracers of matter structure in the Universe, such as galaxy number counts. The method we develop will improve the sensitivity of future searches for anisotropy in the SGWB and expand the use of SGWB anisotropy to probe the formation of structure in the Universe. In order to compute the cross-correlation, we used the spherical harmonic decomposition of SGWB in multiple frequency bands and converted them into pixel-based sky maps in healpix basis. For the EM part, we use the Sloan Digital Sky Survey alaxy catalogue and form healpix sky maps of galaxy number counts at the same angular resolution as the SGWB maps. We compute the pixel-based coherence between these SGWB and galaxy count maps. After evaluating our results in different SGWB frequency bands and in different galaxy redshift bins, we conclude that the coherence between the SGWB and galaxy number count maps is dominated by the null measurement noise in the SGWB maps, and therefore not statistically significant. We expect the results of this analysis to be significantly improved by using the more sensitive upcoming SGWB measurements based on the third observing run of Advanced LIGO and Advanced Virgo. 
    more » « less
  4. Abstract Based on the prior O1–O2 observing runs, about 30% of the data collected by Advanced LIGO and Virgo in the next observing runs are expected to be single-interferometer data, i.e. they will be collected at times when only one detector in the network is operating in observing mode. Searches for gravitational-wave signals from supernova events do not rely on matched filtering techniques because of the stochastic nature of the signals. If a Galactic supernova occurs during single-interferometer times, separation of its unmodelled gravitational-wave signal from noise will be even more difficult due to lack of coherence between detectors. We present a novel machine learning method to perform single-interferometer supernova searches based on the standard LIGO-Virgo coherent WaveBurst pipeline. We show that the method may be used to discriminate Galactic gravitational-wave supernova signals from noise transients, decrease the false alarm rate of the search, and improve the supernova detection reach of the detectors. 
    more » « less
  5. ABSTRACT The Legacy Survey of Space and Time (LSST) by the Vera C. Rubin Observatory is expected to discover tens of millions of quasars. A significant fraction of these could be powered by coalescing massive black hole (MBH) binaries, since many quasars are believed to be triggered by mergers. We show that under plausible assumptions about the luminosity functions, lifetimes, and binary fractions of quasars, we expect the full LSST quasar catalogue to contain between 20 and 100 million compact MBH binaries with masses M = 105–9M⊙, redshifts z = 0–6, and orbital periods P = 1–70 d. Their light-curves are expected to be distinctly periodic, which can be confidently distinguished from stochastic red-noise variability, because LSST will cover dozens, or even hundreds of cycles. A very small subset of 10–150 ultracompact (P ≲ 1 d) binary quasars among these will, over ∼5–15 yr, evolve into the mHz gravitational-wave frequency band and can be detected by LISA. They can therefore be regarded as ‘LISA verification binaries’, analogous to short-period Galactic compact-object binaries. The practical question is how to find these handful of ‘needles in the haystack’ among the large number of quasars: this will likely require a tailored co-adding analysis optimized for this purpose. 
    more » « less