skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale Coupled Models for Complex Media: From Analysis to Simulation in Geophysics and Medicine
Many real-life applications require mathematical models at multiple scales, defined in domains with complex structures, some of which having time dependent boundaries. Mathematical models of this type are encountered in seemingly disparate areas e.g., flow and deformation in the subsurface or beneath the ocean floor, and in processes of clinical relevance. While the areas are different, the structure of the models and the challenges are shared: the analysis and simulation must account for the evolution of the domain due to the many coupled processes in the multi-scale context. The key theme and focus of the workshop were novel ideas in the mathematical modeling, analysis, and numerical simulation, which are cross-cutting between the two application areas mentioned above. The talks have covered the mathematical treatment of such problems, as well as the development of efficent numerical discretization schemes and of solvers for large-scale problems.  more » « less
Award ID(s):
2011319
PAR ID:
10583553
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Peszynska, Malgorzata; Pop, Iuliu_Sorin; Wohlmuth, Diepenbeek_Barbara
Publisher / Repository:
Oberwolfach Reports
Date Published:
Journal Name:
Oberwolfach Reports
Volume:
19
Issue:
1
Page Range / eLocation ID:
171 to 229
Subject(s) / Keyword(s):
Multiscale models Fluid-poroelastic structure interaction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hill-type muscle models are highly preferred as phenomenological models for musculoskeletal simulation studies despite their introduction almost a century ago. The use of simple Hill-type models in simulations, instead of more recent cross-bridge models, is well justified since computationally ‘light-weight’—although less accurate—Hill-type models have great value for large-scale simulations. However, this article aims to invite discussion on numerical instability issues of Hill-type muscle models in simulation studies, which can lead to computational failures and, therefore, cannot be simply dismissed as an inevitable but acceptable consequence of simplification. We will first revisit the basic premises and assumptions on the force–length and force–velocity relationships that Hill-type models are based upon, and their often overlooked but major theoretical limitations. We will then use several simple conceptual simulation studies to discuss how these numerical instability issues can manifest as practical computational problems. Lastly, we will review how such numerical instability issues are dealt with, mostly in an ad hoc fashion, in two main areas of application: musculoskeletal biomechanics and computer animation. 
    more » « less
  2. null (Ed.)
    SUMMARY Evidence from seismology, geology and geodynamic studies suggests that regional-scale lower crustal flow occurs in many tectonic settings. Pressure gradients caused by mantle processes and crustal density heterogeneity can provide driving force for lower crustal flow. Numerically modelling such flow can be computationally expensive. However, by exploiting symmetry in the physical system, it is possible to represent the vertical component of flow in terms of its lateral components, thereby reducing the problem’s spatial dimension by one. Here, we present a mathematical formulation for flow in a viscous channel below an elastic upper plate, which is optimized for solution by common numerical methods. Our formulation drastically reduces the computational load required to simulate lower crustal flow over large areas and long timescales. We apply this model to two example problems, with and without an elastic upper plate, identifying combinations of parameters that are capable of generating measurable geologic uplift. 
    more » « less
  3. Abstract Many inverse problems are naturally formulated as a PDE-constrained optimization problem. These non-linear, large-scale, constrained optimization problems know many challenges, of which the inherent non-linearity of the problem is an important one. In this paper, we focus on a relaxed formulation of the PDE-constrained optimization problem and provide analysis for its properties including convexity under certain assumptions. Starting from an infinite-dimensional formulation of the inverse problem with discrete data, we propose a general framework for the analysis and discretisation of such problems. The relaxed formulation of the PDE-constrained optimization problem is shown to reduce to a weighted non-linear least-squares problem. The weight matrix turns out to be the Gram matrix of solutions of the PDE, and in some cases be estimated directly from the measurements. The latter observation points to a potential way to unify recently proposed data-driven reduced-order models for inverse problems with PDE-constrained optimization. We provide a number of representative case studies and numerical examples to illustrate our findings. 
    more » « less
  4. This preliminary study examined how users leveraged three different types of signaling elements in Scale Worlds, an immersive virtual reality (IVR) application designed to improve size and scale cognition. Signaling elements, which are instructional cues in the form of graphics, colors, sounds, or text in IVR, may improve learning outcomes by enhancing related cognitive processes. However, it is unclear the extent to which learners utilize these signaling elements in practice. A think-aloud protocol was used to examine how participants engaged with signaling elements, with thematic analysis suggesting that numerical measures were a particularly salient cue for conceptualizing the size and scale of entities in IVR. These findings can guide design decisions for future work on educational IVR in the context of size and scale cognition or STEM education, as implementing numerical measures to facilitate mathematical reasoning in IVR environments may bolster learning outcomes related to numeracy and conceptual understanding. 
    more » « less
  5. Abstract Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like. 
    more » « less