Abstract Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system’s capability to accurately predict both human intentions and trajectories. 
                        more » 
                        « less   
                    This content will become publicly available on April 18, 2026
                            
                            Predicting Human Perceptions of Robot Performance during Navigation Tasks
                        
                    
    
            Understanding human perceptions of robot performance is crucial for designing socially intelligent robots that can adapt to human expectations. Current approaches often rely on surveys, which can disrupt ongoing human–robot interactions. As an alternative, we explore predicting people’s perceptions of robot performance using non-verbal behavioral cues and machine learning techniques. We contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in Virtual Reality, together with perceptions of robot performance provided by users on a 5-point scale. We then analyze how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression and spatial behavior features). Our results suggest that facial expressions alone provide useful information, but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques outperformed humans’ predictions in most cases. Further, when predicting robot performance as a binary classification task on unseen users’ data, the F1-Score of machine learning models more than doubled that of predictions on a 5-point scale. This suggested good generalization capabilities, particularly in identifying performance directionality over exact ratings. Based on these findings, we conducted a real-world demonstration where a mobile robot uses a machine learning model to predict how a human who follows it perceives it. Finally, we discuss the implications of our results for implementing these supervised learning models in real-world navigation. Our work paves the path to automatically enhancing robot behavior based on observations of users and inferences about their perceptions of a robot. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10583555
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Human-Robot Interaction
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2573-9522
- Page Range / eLocation ID:
- 1 to 27
- Subject(s) / Keyword(s):
- Implicit human feedback human-robot interaction social robot navigation virtual reality
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system's capability to accurately predict both human intentions and trajectories.more » « less
- 
            Abstract Human–robot collaboration (HRC) has become an integral element of many manufacturing and service industries. A fundamental requirement for safe HRC is understanding and predicting human trajectories and intentions, especially when humans and robots operate nearby. Although existing research emphasizes predicting human motions or intentions, a key challenge is predicting both human trajectories and intentions simultaneously. This paper addresses this gap by developing a multi-task learning framework consisting of a bi-long short-term memory-based encoder–decoder architecture that obtains the motion data from both human and robot trajectories as inputs and performs two main tasks simultaneously: human trajectory prediction and human intention prediction. The first task predicts human trajectories by reconstructing the motion sequences, while the second task tests two main approaches for intention prediction: supervised learning, specifically a support vector machine, to predict human intention based on the latent representation, and, an unsupervised learning method, the hidden Markov model, that decodes the latent features for human intention prediction. Four encoder designs are evaluated for feature extraction, including interaction-attention, interaction-pooling, interaction-seq2seq, and seq2seq. The framework is validated through a case study of a desktop disassembly task with robots operating at different speeds. The results include evaluating different encoder designs, analyzing the impact of incorporating robot motion into the encoder, and detailed visualizations. The findings show that the proposed framework can accurately predict human trajectories and intentions.more » « less
- 
            Humans are well-adept at navigating public spaces shared with others, where current autonomous mobile robots still struggle: while safely and efficiently reaching their goals, humans communicate their intentions and conform to unwritten social norms on a daily basis; conversely, robots become clumsy in those daily social scenarios, getting stuck in dense crowds, surprising nearby pedestrians, or even causing collisions. While recent research on robot learning has shown promises in data-driven social robot navigation, good-quality training data is still difficult to acquire through either trial and error or expert demonstrations. In this work, we propose to utilize the body of rich, widely available, social human navigation data in many natural human-inhabited public spaces for robots to learn similar, human-like, socially compliant navigation behaviors. To be specific, we design an open-source egocentric data collection sensor suite wearable by walking humans to provide multimodal robot perception data; we collect a large-scale (~100 km, 20 hours, 300 trials, 13 humans) dataset in a variety of public spaces which contain numerous natural social navigation interactions; we analyze our dataset, demonstrate its usability, and point out future research directions and use cases.11Website: https://cs.gmu.edu/-xiao/Research/MuSoHu/more » « less
- 
            Artificial intelligence (AI) and machine learning models are being increasingly deployed in real-world applications. In many of these applications, there is strong motivation to develop hybrid systems in which humans and AI algorithms can work together, leveraging their complementary strengths and weaknesses. We develop a Bayesian framework for combining the predictions and different types of confidence scores from humans and machines. The framework allows us to investigate the factors that influence complementarity, where a hybrid combination of human and machine predictions leads to better performance than combinations of human or machine predictions alone. We apply this framework to a large-scale dataset where humans and a variety of convolutional neural networks perform the same challenging image classification task. We show empirically and theoretically that complementarity can be achieved even if the human and machine classifiers perform at different accuracy levels as long as these accuracy differences fall within a bound determined by the latent correlation between human and machine classifier confidence scores. In addition, we demonstrate that hybrid human–machine performance can be improved by differentiating between the errors that humans and machine classifiers make across different class labels. Finally, our results show that eliciting and including human confidence ratings improve hybrid performance in the Bayesian combination model. Our approach is applicable to a wide variety of classification problems involving human and machine algorithms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
