skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temporal Dependencies and Spatio-Temporal Patterns of Time Series Models
The widespread use of Artificial Intelligence (AI) has highlighted the importance of understanding AI model behavior. This understanding is crucial for practical decision-making, assessing model reliability, and ensuring trustworthiness. Interpreting time series forecasting models faces unique challenges compared to image and text data. These challenges arise from the temporal dependencies between time steps and the evolving importance of input features over time. My thesis focuses on addressing these challenges by aiming for more precise explanations of feature interactions, uncovering spatiotemporal patterns, and demonstrating the practical applicability of these interpretability techniques using real-world datasets and state-of-the-art deep learning models.  more » « less
Award ID(s):
2151597
PAR ID:
10583569
Author(s) / Creator(s):
Corporate Creator(s):
Publisher / Repository:
Proceedings of the AAAI Conference on Artificial Intelligence, 38(21), 23391-23392.
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Edition / Version:
1
Volume:
38
Issue:
21
ISSN:
2159-5399
Page Range / eLocation ID:
23391 to 23392
Subject(s) / Keyword(s):
Deep Learning, Interpretation, Time Series, Spatio-temporal, Explainability
Format(s):
Medium: X Size: 235KB Other: pdf
Size(s):
235KB
Sponsoring Org:
National Science Foundation
More Like this
  1. Drought is one of the most destructive and expensive natural disasters, severely impacting natural resources and risks by depleting water resources and diminishing agricultural yields. Under climate change, accurately predicting drought is critical for mitigating drought-induced risks. However, the intricate interplay among the physical and biological drivers that regulate droughts limits the predictability and understanding of drought, particularly at a subseasonal to seasonal (S2S) time scale. While deep learning has demonstrated the potential to address climate forecasting challenges, its application to drought prediction has received relatively less attention. In this work, we propose a new dataset, DroughtSet, which integrates relevant predictive features and three drought indices from multiple remote sensing and reanalysis datasets across the contiguous United States (CONUS). DroughtSet specifically provides the machine learning community with a new real-world dataset to benchmark drought prediction models and more generally, time-series forecasting methods. Furthermore, we propose a spatial-temporal model SPDrought to predict and interpret S2S droughts. Our model learns from the spatial and temporal information of physical and biological features to predict three types of droughts simultaneously. Multiple strategies are employed to quantify the importance of physical and biological features for drought prediction. Our results provide insights for researchers to better understand the predictability and sensitivity of drought to biological and physical conditions. We aim to contribute to the climate field by proposing a new tool to predict and understand the occurrence of droughts and provide the AI community with a new benchmark to study deep learning applications in climate science. 
    more » « less
  2. Predictive modeling of clinical time series data is challenging due to various factors. One such difficulty is the existence of missing values, which leads to irregular data. Another challenge is capturing correlations across multiple dimensions in order to achieve accurate predictions. Additionally, it is essential to take into account the temporal structure, which includes both short-term and long-term recurrent patterns, to gain a comprehensive understanding of disease progression and to make accurate predictions for personalized healthcare. In critical situations, models that can make multi-step ahead predictions are essential for early detection. This review emphasizes the need for forecasting models that can effectively address the aforementioned challenges. The selection of models must also take into account the data-related constraints during the modeling process. Time series models can be divided into statistical, machine learning, and deep learning models. This review concentrates on the main models within these categories, discussing their capability to tackle the mentioned challenges. Furthermore, this paper provides a brief overview of a technique aimed at mitigating the limitations of a specific model to enhance its suitability for clinical prediction. It also explores ensemble forecasting methods designed to merge the strengths of various models while reducing their respective weaknesses, and finally discusses hierarchical models. Apart from the technical details provided in this document, there are certain aspects in predictive modeling research that have arisen as possible obstacles in implementing models using biomedical data. These obstacles are discussed leading to the future prospects of model building with artificial intelligence in healthcare domain. 
    more » « less
  3. Chen, Guohua; Khan, Faisal (Ed.)
    Artificial intelligence (AI) and machine learning (ML) are novel techniques to detect hidden patterns in environmental data. Despite their capabilities, these novel technologies have not been seriously used for real-world problems, such as real-time environmental monitoring. This survey established a framework to advance the novel applications of AI and ML techniques such as Tiny Machine Learning (TinyML) in water environments. The survey covered deep learning models and their advantages over classical ML models. The deep learning algorithms are the heart of TinyML models and are of paramount importance for practical uses in water environments. This survey highlighted the capabilities and discussed the possible applications of the TinyML models in water environments. This study indicated that the TinyML models on microcontrollers are useful for a number of cutting-edge problems in water environments, especially for monitoring purposes. The TinyML models on microcontrollers allow for in situ real-time environmental monitoring without transferring data to the cloud. It is concluded that monitoring systems based on TinyML models offer cheap tools to autonomously track pollutants in water and can replace traditional monitoring methods. 
    more » « less
  4. Material characterization techniques are widely used to characterize the physical and chemical properties of materials at the nanoscale and, thus, play central roles in material scientific discoveries. However, the large and complex datasets generated by these techniques often require significant human effort to interpret and extract meaningful physicochemical insights. Artificial intelligence (AI) techniques such as machine learning (ML) have the potential to improve the efficiency and accuracy of surface analysis by automating data analysis and interpretation. In this perspective paper, we review the current role of AI in surface analysis and discuss its future potential to accelerate discoveries in surface science, materials science, and interface science. We highlight several applications where AI has already been used to analyze surface analysis data, including the identification of crystal structures from XRD data, analysis of XPS spectra for surface composition, and the interpretation of TEM and SEM images for particle morphology and size. We also discuss the challenges and opportunities associated with the integration of AI into surface analysis workflows. These include the need for large and diverse datasets for training ML models, the importance of feature selection and representation, and the potential for ML to enable new insights and discoveries by identifying patterns and relationships in complex datasets. Most importantly, AI analyzed data must not just find the best mathematical description of the data, but it must find the most physical and chemically meaningful results. In addition, the need for reproducibility in scientific research has become increasingly important in recent years. The advancement of AI, including both conventional and the increasing popular deep learning, is showing promise in addressing those challenges by enabling the execution and verification of scientific progress. By training models on large experimental datasets and providing automated analysis and data interpretation, AI can help to ensure that scientific results are reproducible and reliable. Although integration of knowledge and AI models must be considered for the transparency and interpretability of models, the incorporation of AI into the data collection and processing workflow will significantly enhance the efficiency and accuracy of various surface analysis techniques and deepen our understanding at an accelerated pace. 
    more » « less
  5. Introduction: Artificial intelligence (AI) technologies continue to attract interest from a broad range of disciplines in recent years, including health. The increase in computer hardware and software applications in medicine, as well as digitization of health-related data together fuel progress in the development and use of AI in medicine. This progress provides new opportunities and challenges, as well as directions for the future of AI in health. Objective: The goals of this survey are to review the current state of AI in health, along with opportunities, challenges, and practical implications. This review highlights recent developments over the past five years and directions for the future. Methods: Publications over the past five years reporting the use of AI in health in clinical and biomedical informatics journals, as well as computer science conferences, were selected according to Google Scholar citations. Publications were then categorized into five different classes, according to the type of data analyzed. Results: The major data types identified were multi-omics, clinical, behavioral, environmental and pharmaceutical research and development (R&D) data. The current state of AI related to each data type is described, followed by associated challenges and practical implications that have emerged over the last several years. Opportunities and future directions based on these advances are discussed. Conclusion: Technologies have enabled the development of AI-assisted approaches to healthcare. However, there remain challenges. Work is currently underway to address multi-modal data integration, balancing quantitative algorithm performance and qualitative model interpretability, protection of model security, federated learning, and model bias. 
    more » « less