Serverless computing is an increasingly attractive paradigm in the cloud due to its ease of use and fine-grained pay-for-what-you-use billing. However, serverless computing poses new challenges to system design due to its short-lived function execution model. Our detailed analysis reveals that memory management is responsible for a major amount of function execution cycles. This is because functions pay the full critical-path costs of memory management in both userspace and the operating system without the opportunity to amortize these costs over their short lifetimes. To address this problem, we propose Memento, a new hardware-centric memory management design based upon our insights that memory allocations in serverless functions are typically small, and either quickly freed after allocation or freed when the function exits. Memento alleviates the overheads of serverless memory management by introducing two key mechanisms: (i) a hardware object allocator that performs in-cache memory allocation and free operations based on arenas, and (ii) a hardware page allocator that manages a small pool of physical pages used to replenish arenas of the object allocator. Together these mechanisms alleviate memory management overheads and bypass costly userspace and kernel operations. Memento naturally integrates with existing software stacks through a set of ISA extensions that enable seamless integration with multiple languages runtimes. Finally, Memento leverages the newly exposed memory allocation semantics in hardware to introduce a main memory bypass mechanism and avoid unnecessary DRAM accesses for newly allocated objects. We evaluate Memento with full-system simulations across a diverse set of containerized serverless workloads and language runtimes. The results show that Memento achieves function execution speedups ranging between 8–28% and 16% on average. Furthermore, Memento hardware allocators and main memory bypass mechanisms drastically reduce main memory traffic by 30% on average. The combined effects of Memento reduce the pricing cost of function execution by 29%. Finally, we demonstrate the applicability of Memento beyond functions, to major serverless platform operations and long-running data processing applications. 
                        more » 
                        « less   
                    This content will become publicly available on April 28, 2026
                            
                            Making Serverless Pay-For-Use a Reality with Leopard
                        
                    
    
            Serverless computing has gained traction due to its event-driven architecture and “pay for use” (PFU) billing model. However, our analysis reveals that current billing practices do not align with true resource consumption. This paper challenges the prevailing SLIM (static, linear, interactive-only model) assumptions that underpin existing billing models, demonstrating that current billing does not realize PFU for realistic workloads. We introduce the Nearly Pay-for-Use (NPFU) billing model, which accommodates varying CPU and memory demands, spot cores, and preemptible memory. We also introduce Leopard, an NPFU-based serverless platform that integrates billing awareness into several major subsystems: CPU scheduler, OOM killer, admission controller, and cluster scheduler. Experimental results indicate that Leopard benefits both providers and users, increasing throughput by more than 2x and enabling cost reductions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2402859
- PAR ID:
- 10583616
- Editor(s):
- USENIX
- Publisher / Repository:
- USENIX NSDI
- Date Published:
- Subject(s) / Keyword(s):
- cloud, serverless
- Format(s):
- Medium: X
- Location:
- Philadelphia, PA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Serverless computing has become increasingly popular for cloud applications, due to its compelling properties of high-level abstractions, lightweight runtime, high elasticity and pay-per-use billing. In this revolutionary computing paradigm shift, challenges arise when adapting data analytics applications to the serverless environment, due to the lack of support for efficient state sharing, which attract ever-growing research attention. In this paper, we aim to exploit the advantages of task level orchestration and fine-grained resource provisioning for data analytics on serverless platforms, with the hope of fulfilling the promise of serverless deployment to the maximum extent. To this end, we present ACTS, an autonomous cost-efficient task orchestration framework for serverless analytics. ACTS judiciously schedules and coordinates function tasks to mitigate cold-start latency and state sharing overhead. In addition, ACTS explores the optimization space of fine-grained workload distribution and function resource configuration for cost efficiency. We have deployed and implemented ACTS on AWS Lambda, evaluated with various data analytics workloads. Results from extensive experiments demonstrate that ACTS achieves up to 98% monetary cost reduction while maintaining superior job completion time performance, in comparison with the state-of-the-art baselines.more » « less
- 
            Serverless computing promises an efficient, low-cost compute capability in cloud environments. However, existing solutions, epitomized by open-source platforms such as Knative, include heavyweight components that undermine this goal of serverless computing. Additionally, such serverless platforms lack dataplane optimizations to achieve efficient, high-performance function chains that facilitate the popular microservices development paradigm. Their use of unnecessarily complex and duplicate capabilities for building function chains severely degrades performance. 'Cold-start' latency is another deterrent. We describe SPRIGHT, a lightweight, high-performance, responsive serverless framework. SPRIGHT exploits shared memory processing and dramatically improves the scalability of the dataplane by avoiding unnecessary protocol processing and serialization-deserialization overheads. SPRIGHT extensively leverages event-driven processing with the extended Berkeley Packet Filter (eBPF). We creatively use eBPF's socket message mechanism to support shared memory processing, with overheads being strictly load-proportional. Compared to constantly-running, polling-based DPDK, SPRIGHT achieves the same dataplane performance with 10× less CPU usage under realistic workloads. Additionally, eBPF benefits SPRIGHT, by replacing heavyweight serverless components, allowing us to keep functions 'warm' with negligible penalty. Our preliminary experimental results show that SPRIGHT achieves an order of magnitude improvement in throughput and latency compared to Knative, while substantially reducing CPU usage, and obviates the need for 'cold-start'.more » « less
- 
            SPRIGHT: High-Performance eBPF-Based Event-Driven, Shared-Memory Processing for Serverless ComputingServerless computing promises an efficient, low-cost compute capability in cloud environments. However, existing solutions, epitomized by open-source platforms such as Knative, include heavyweight components that undermine this goal of serverless computing. Additionally, such serverless platforms lack dataplane optimizations to achieve efficient, high-performance function chains that facilitate the popular microservices development paradigm. Their use of unnecessarily complex and duplicate capabilities for building function chains severely degrades performance. ‘Cold-start’ latency is another deterrent. We describe SPRIGHT, a lightweight, high-performance, responsive serverless framework. SPRIGHT exploits shared memory processing and dramatically improves the scalability of the dataplane by avoiding unnecessary protocol processing and serialization-deserialization overheads. SPRIGHT extensively leverages event-driven processing with the extended Berkeley Packet Filter (eBPF). We creatively use eBPF’s socket message mechanism to support shared memory processing, with overheads being strictly load-proportional. Compared to constantly-running, polling-based DPDK, SPRIGHT achieves the same dataplane performance with 10× less CPU usage under realistic workloads. Additionally, eBPF benefits SPRIGHT, by replacing heavyweight serverless components, allowing us to keep functions ‘warm’ with negligible penalty. Our preliminary experimental results show that SPRIGHT achieves an order of magnitude improvement in throughput and latency compared to Knative, while substantially reducing CPU usage, and obviates the need for ‘cold-start’.more » « less
- 
            Internet-scale web applications are becoming increasingly storage-intensive and rely heavily on in-memory object caching to attain required I/O performance. We argue that the emerging serverless computing paradigm provides a well-suited, cost-effective platform for object caching. We present InfiniCache, a first-of-its-kind in-memory object caching system that is completely built and deployed atop ephemeral serverless functions. InfiniCache exploits and orchestrates serverless functions' memory resources to enable elastic pay-per-use caching. InfiniCache's design combines erasure coding, intelligent billed duration control, and an efficient data backup mechanism to maximize data availability and cost-effectiveness while balancing the risk of losing cached state and performance. We implement InfiniCache on AWS Lambda and show that it: (1) achieves 31 – 96× tenant-side cost savings compared to AWS ElastiCache for a large-object-only production workload, (2) can effectively provide 95.4% data availability for each one hour window, and (3) enables comparative performance seen in a typical in-memory cache.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
