Abstract The reactions of acetone and hydroxyacetone over heteroatom doped BEA zeolites (Sn, Mo, and W) in the presence and absence of H2O vapor are investigated using infrared spectroscopy. Acetone is converted to mesityl oxide over Sn‐BEA exclusively. At higher temperatures, larger oxygenates such as phorones, aromatics, and coke form. The presence of co‐adsorbed water in Sn‐BEA suppresses tautomerization. H2O vapor is also beneficial for minimizing coke formation at high temperatures. Hydroxyacetone is converted into 2‐hydroxypropanal over Sn‐BEA, exhibiting high affinity to Sn sites up to 400 °C. Sn‐BEA catalyzes conversion of hydroxyacetone into the enol in the absence of H2O, but exposure to H2O induces the formation of 2‐hydroxypropanal and subsequent conversion to acrolein. The Lewis acid descriptors are used to rationalize the reaction pathways. For the isomerization of hydroxyacetone into 2‐hydroxypropanal, the hardness of acid sites influences the reaction and correlates with the overall Lewis acidity of the catalysts, respectively. However, the size of the exchanged metal significantly affects aldol condensation, where keto and enol forms of acetone adsorb to active sites simultaneously.
more »
« less
Mechanism of Thermal Decomposition of Hydroxyacetone: A Flash Pyrolysis Vacuum Ultraviolet Photoionization Time-of-Flight Mass Spectrometry and Density Functional Theory Study
he thermal decomposition mechanism of hydroxyacetone from 850 to 1390 K was examined by using flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry combined with density functional theory calculation. The results showed that keto–enol tautomerisms could occur prior to the thermal decomposition of hydroxyacetone. The decomposition pathways of hydroxyacetone and its isomer, 2-hydroxypropanal were characterized. The thermal decomposition reactions started at about 950 K. The homolysis reactions related to the cleavage of the CCO–CCOH bond of hydroxyacetone and 2-hydroxypropanal, as well as CH3 loss of hydroxyacetone, dominated the initial decomposition reactions. The subsequent decompositions of the radical intermediates generated by the initial homolysis decompositions were the major secondary decomposition reactions. The formation pathways of small molecules, such as H2, CH4, H2O, and HCHO, were proposed to proceed via molecular elimination reactions facilitated by the active α-H atoms. These elimination reactions were not negligible at high temperatures above 1230 K.
more »
« less
- Award ID(s):
- 2155232
- PAR ID:
- 10583662
- Publisher / Repository:
- ACS
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry A
- Volume:
- 127
- Issue:
- 45
- ISSN:
- 1089-5639
- Page Range / eLocation ID:
- 9590 to 9600
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We unravel, for the very first time, the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH), as well as their enol tautomers within mixed ices of methanol (CH 3 OH) and acetaldehyde (CH 3 CHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CH 3 COCH 2 OH), methyl acetate (CH 3 COOCH 3 ), and 3-hydroxypropanal (HCOCH 2 CH 2 OH) via radical–radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CH 3 C(OH)CHOH), prop-2-ene-1,2-diol (CH 2 C(OH)CH 2 OH), 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH)) via keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CH 3 OC(OH)CH 2 ) and prop-1-ene-1,3-diol (HOCH 2 CHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity.more » « less
-
Abstract The mechanism of isomerization of hydroxyacetone to 2‐hydroxypropanal is studied within the framework of reaction force analysis at the M06‐2X/6‐311++G(d,p) level of theory. Three unique pathways are considered: (a) a step‐wise mechanism that proceeds through the formation of the Z‐isomer of their shared enediol intermediate, (b) a step‐wise mechanism that forms the E‐isomer of the enediol, and (c) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol−1. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism.more » « less
-
2,4,dimethyloxetane is an important cyclic ether intermediate that is produced from hydroperoxyalkyl (QOOH) radicals in the low-temperature combustion of n -pentane. However, the reaction mechanisms and rates of consumption pathways remain unclear. In the present work, the pressure- and temperature-dependent kinetics of seven cyclic ether peroxy radicals, which stem from 2,4,dimethyloxetane via H-abstraction and O 2 addition, were determined. The automated kinetic workflow code, KinBot, was used to model the complexity of the chemistry in a stereochemically resolved manner and solve the resulting master equations from 300–1000 K and from 0.01–100 atm. The main conclusions from the calculations include (i) diastereomeric cyclic ether peroxy radicals show significantly different reactivities, (ii) the stereochemistry of the peroxy radical determines which QOOH isomerization steps are possible, (iii) conventional QOOH decomposition pathways, such as cyclic ether formation and HO 2 elimination, compete with ring-opening reactions, which primarily produce OH radicals, the outcome of which is sensitive to stereochemistry. Ring-opening reactions lead to unique products, such as unsaturated, acyclic peroxy radicals, that form direct connections with species present in other chemical kinetics mechanisms through "cross-over" reactions that may complicate the interpretation of experimental results from combustion of n-pentane and, by extension, other alkanes. For example, one cross-over reaction involving 1-hydroperoxy-4-pentanone-2-yl produces 2-(hydroperoxymethyl)-3-butanone-1-yl, which is an iso-pentane-derived ketohydroperoxide (KHP). At atmospheric pressure, the rate of chemical reactions of all seven peroxy radicals compete with that of collisional stabilization, resulting in well-skipping reactions. However, at 100 atm, only one out of seven peroxy radicals undergoes significant well-skipping reactions. The rates produced from the master equation calculations provide the first foundation for the development of detailed sub-mechanisms for cyclic ether intermediates. In addition, analysis of the complex reaction mechanisms of 2,4-dimethyloxetane-derived peroxy radicals provides insights into the effects of stereoisomers on reaction pathways and product yields.more » « less
-
Cyclic ethers undergo H-abstraction reactions that yield carbon-centered radicals (Ṙ). The ether functional group introduces a competing set of reaction pathways: ring-opening and reaction with O2 to form peroxy radical adducts, ROȮ, which can result in stereoisomers. ROȮ derived from cyclic ethers can subsequently isomerize into hydroperoxy-substituted carbon-centered radicals, Q̇OOH, which can also undergo ring-opening reactions or pathways prototypical to alkyl oxidation. The balance of reactions that unfold from cyclic ether radicals depends intrinsically on the size of the ring and the structure of any substituents retained in the formation step. The present work examines unimolecular reactions of peroxy radicals from 2-ethyloxetane, a four-membered cyclic ether formed during n-pentane oxidation, and reveals stereoisomer-specific reaction pathways. Automated quantum chemical computations were conducted on constitutional and stereoisomers of ROȮ derived from O2-addition to 2-ethyloxetanyl radicals. Pressure-dependent rate calculations were conducted by solving the master equation from 300 – 1000 K and from 0.01 – 100 atm. Branching fractions were then calculated at 650 K and 825 K, the peak temperatures at which cyclic ethers form in alkane oxidation. Isomer-specific reaction pathways of anti-ROO and syn-ROO and resulting impact on radical production were evident. Q̇OOH ring-opening reactions were significant as were rates of bi-cyclic ether formation common in alkyl radical oxidation. Detailed prescription of rates and reaction mechanisms describing cyclic ether consumption mechanisms are important to enable accurate modeling of reactions of ephemeral Q̇OOH radicals because of the direct, isomer-specific formation pathways. In addition, detailed cyclic ether mechanisms are required to reduce mechanism truncation error. The results herein provide insight on connections between cyclic ethers and chain-reaction pathways yielding ȮH, HOȮ, and other radicals, in addition to pathways leading to performic acid (HOOC(=O)H), the decomposition of which via O–O scission results in an exothermic, chain-branching step.more » « less
An official website of the United States government

