skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unexpected absence of a multiple-queen supergene haplotype from supercolonial populations of Formica ants
Abstract Ants exhibit many complex social organization strategies. One particularly elaborate strategy is supercoloniality, in which a colony consists of many interconnected nests (= polydomy) with many queens (= polygyny). In many species of Formica ants, an ancient queen number supergene determines whether a colony is monogyne (= headed by single queen) or polygyne. The presence of the rearranged P haplotype typically leads colonies to be polygyne. However, the presence and function of this supergene polymorphism have not been examined in supercolonial populations. Here, we use genomic data from species in the Formica rufa group to determine whether the P haplotype leads to supercoloniality. In a Formica paralugubris population, we find that nests are polygyne despite the absence of the P haplotype in workers. We find spatial genetic ancestry patterns in nests consistent with supercolonial organization. Additionally, we find that the P haplotype is also absent in workers from supercolonial Formica aquilonia and Formica aquilonia × polyctena hybrid populations but is present in some Formica polyctena workers. We conclude that the P haplotype is not necessary for supercoloniality in the Formica rufa group, despite its long-standing association with non-supercolonial polygyny across the Formica genus.  more » « less
Award ID(s):
2215705
PAR ID:
10583668
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
38
Issue:
4
ISSN:
1420-9101
Format(s):
Medium: X Size: p. 543-553
Size(s):
p. 543-553
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most supergenes discovered so far are young, occurring in one species or a few closely related species. An ancient supergene in the ant genusFormicapresents an unusual opportunity to compare supergene‐associated phenotypes and the factors that influence the persistence of polymorphism in different species. We investigate the genetic architecture of social organization inFormica francoeuri, an ant species native to low‐ and mid‐elevation semiarid regions of southern California, and describe an efficient technique for estimating mode of social organization using population genomic data. Using this technique, we show thatF. francoeuriexhibits polymorphism in colony social organization and that the phenotypic polymorphism is strongly associated with genotypes within theFormicasocial supergene region. The distribution of supergene haplotypes inF. francoeuridiffers from that of related speciesFormica selysiin that colonies with multiple queens contain almost exclusively workers that are heterozygous for alternative supergene haplotypes. Moreover, heterozygous workers exhibit allele‐specific expression of the polygyne‐associated haplotype at the candidate geneKnockout,which is thought to influence social organization. We also report geographic population structure and variation in worker size across a large fraction of the species range. Our results suggest that, although theFormicasupergene is conserved within the genus, the mechanisms that maintain the supergene and its associated polymorphisms differ among species. 
    more » « less
  2. Genes and the environment jointly shape individual traits, but the influence of indirect genetic effects (IGEs), arising from the genetic composition of interacting conspecific individuals, is often ignored or underemphasized. Moreover, because of practical challenges in characterizing IGEs, empirical research has fallen behind theoretical advancement. The fire antSolenopsis invictaoffers a uniquely suitable study system due to its distinct colony-level phenotypic variation (monogyne and polygyne social forms) attributed to IGEs of a social-supergene variant (ballele). A minority ofb-carrying workers (Bbgenotype) can trigger colony-level conversion from monogyne (single queen per colony) to polygyne (multiple queens per colony) behavior. This study investigated the mechanisms underlying this process via 400-ant microcolonies. We first showed that assimilatedBbworkers reduce aggression by hostBBworkers towardBbqueens, thus inducing polygyny, at rates observed earlier in experiments that used full-size (>20,000 ants) colonies. We then demonstrated that social conversion is facilitated by cuticular contact between the worker types, and verified the presence of nonvolatile cuticular pheromones that are necessary but not sufficient components underpinning this process. Follow-up experiments suggested that a second, polygyne worker-produced pheromone that is only released once such workers detect aBbqueen is also necessary but again insufficient, for full expression of the conversion phenomenon. Thus, multiple pheromonal components linked to presence of thebsupergene allele in colony workers appear to be involved in shaping social environments and thereby inducing, via IGEs, the transformation from monogyne to polygyne fire ant societies. 
    more » « less
  3. Antagonistic selection has long been considered a major driver of the formation and expansion of sex chromosomes. For example, sexually antagonistic variation on an autosome can select for suppressed recombination between that autosome and the sex chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal regions containing tightly linked variants affecting the same complex trait, share similarities with sex chromosomes, raising the possibility that sex chromosome evolution models can explain the evolution of genome structure and recombination in other contexts. We tested this premise in a Formica ant species wherein we identified four supergene haplotypes on chromosome 3 underlying colony social organization and sex ratio. We discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in the single queen (monogyne) background, and thus socially antagonistic. As such, divergent selection experienced by ants living in alternative social ‘environments’ (monogyne and polygyne) may have contributed to the emergence of a genetic polymorphism on chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral polygyne-associated haplotype may have expanded to include the polymorphism on chromosome 9, resulting in a larger region of suppressed recombination spanning two chromosomes. This process is analogous to the formation of neo-sex chromosomes and consistent with models of expanding regions of suppressed recombination. We propose that miniaturized queens, 16-20% smaller than queens without 9r, could be incipient intraspecific social parasites. 
    more » « less
  4. Abstract Selfish genetic elements subvert the normal rules of inheritance to unfairly propagate themselves, often at the expense of other genomic elements and the fitness of individuals carrying them. Social life provides diverse avenues for the propagation of such elements. In the fire ant Solenopsis invicta, polymorphic social organization is controlled by a social chromosome, one variant of which (Sb) enhances its own transmission in polygyne colonies through effects on caste development and queen acceptance by workers. Whether the selfish effects of Sb extend to haploid (reproductive) males in this system is less clear. Here, we demonstrate a strong overrepresentation of the Sb social chromosome haplotype in reproductive males, relative to Mendelian expectations, in both the pupal and adult stages. We tested for the presence of selective execution of adult SB males by workers but did not detect such behavior. Combined with the presence of a strong imbalance in the haplotype frequencies already early in the pupal stage, these results indicate that the Sb supergene may distort male haplotype frequencies during larval or embryonic development. These findings are significant because they demonstrate yet another mode by which the selfish tendencies of the Sb supergene are manifested, illuminate complex interactions between Sb and the fire ant breeding system, inform the development of models of the population dynamics of Sb, and illustrate how a selfish supergene can increase in frequency in a population despite harboring deleterious mutations. 
    more » « less
  5. Abstract The study of social parasitism faces numerous challenges arising from the intricate and intranidal host–parasite interactions and the rarity of parasites compared to their free-living counterparts. As a result, our understanding of the ecology and evolution of most social parasites remains limited. Using whole-genome and reduced-representation sequence data, we conducted a study to fill knowledge gaps on host use, colony social structure, and population genetics of the facultative dulotic ant Formica aserva Forel. Our study reveals the remarkable ability of F. aserva to exploit at least 20 different host species across its wide geographic distribution. In some cases, one social parasite colony exploits multiple hosts simultaneously, suggesting a high degree of generalization even at a local spatial scale. Approximately 80% of the colonies were monogyne (with a single queen), with many exhibiting higher rates of polyandry compared to most Formica ants. Although we identified a supergene on chromosome 3, its association with colony structure remains uncertain due to the rarity of polygyny in our sample. Population genetic analyses reveal substantial geographic population structure, with the greatest divergence between California populations and those from the rest of the range. Mitochondrial population structure differs from structure inferred from the nuclear genome on a broad geographic scale, suggesting a possible role of adaptive introgression or genetic drift. This study provides valuable insights into the ecology and evolution of F. aserva, underscoring the need for further research to decipher the complexities of host interactions and the genetic mechanisms that regulate social structure. 
    more » « less