skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 26, 2026

Title: Observation of Real‐Time Spin‐Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film
Abstract In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra‐fast, energy‐efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin‐orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture. The time‐resolved magneto‐optical Kerr effect (TR‐MOKE) has been a successful tool for probing antiferromagnetic dynamics in bulk materials, thanks to its sub‐picosecond (sub‐ps) time resolution. Yet, its application to nanometer‐scale thin films has been limited by the difficulty of detecting weak signals in such small volumes. In this study, the first successful observation of antiferromagnetic dynamics are presented in nanometer‐thick orthoferrite films using the pump‐probe technique to detect TR‐MOKE signal. This paper report an exceptionally low damping constant of 1.5 × 10−4and confirms the AFM magnonic nature of these dynamics through angular‐dependent measurements. Furthermore, it is observed that electrical currents can potentially modulate these dynamics via SOT. The findings lay the groundwork for developing tunable, energy‐efficient spintronic devices, paving the way for advancements in next‐generation spintronic applications.  more » « less
Award ID(s):
2011876 2225646
PAR ID:
10583677
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
10
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spintronics has emerged as a key technology for fast and nonvolatile memory with great CMOS compatibility. As the building blocks for these cutting-edge devices, magnetic materials require precise characterization of their critical properties, such as the effective anisotropy field (Hk,eff, related to magnetic stability) and damping (α, a key factor in device energy efficiency). Accurate measurements of these properties are essential for designing and fabricating high-performance spintronic devices. Among advanced metrology techniques, time-resolved magneto-optical Kerr effect (TR-MOKE) stands out for its superb temporal and spatial resolutions, surpassing traditional methods like ferromagnetic resonance. However, the full potential of TR-MOKE has not yet been fully fledged due to the lack of systematic optimization and robust operational guidelines. In this study, we address this gap by developing experimentally validated guidelines for optimizing TR-MOKE metrology across materials with perpendicular magnetic anisotropy and in-plane magnetic anisotropy. While Co20Fe60B20 thin films are used for experimental validation, this optimization framework can be readily extended to a variety of materials such as L10-FePd with easy-axis dispersion. Our work identifies the optimal ranges of the field angle to simultaneously achieve high signal amplitudes and improve measurement sensitivities to Hk,eff and α. By suppressing the influence of inhomogeneities and boosting sensitivity, our work significantly enhances TR-MOKE capability to extract magnetic properties with high accuracy and reliability. This optimization framework positions TR-MOKE as an indispensable tool for advancing spintronics, paving the way for energy-efficient and high-speed devices that will redefine the landscape of modern computing and memory technologies. 
    more » « less
  2. Abstract Giant spin-orbit torque (SOT) from topological insulators (TIs) provides an energy efficient writing method for magnetic memory, which, however, is still premature for practical applications due to the challenge of the integration with magnetic tunnel junctions (MTJs). Here, we demonstrate a functional TI-MTJ device that could become the core element of the future energy-efficient spintronic devices, such as SOT-based magnetic random-access memory (SOT-MRAM). The state-of-the-art tunneling magnetoresistance (TMR) ratio of 102% and the ultralow switching current density of 1.2 × 105 A cm−2have been simultaneously achieved in the TI-MTJ device at room temperature, laying down the foundation for TI-driven SOT-MRAM. The charge-spin conversion efficiencyθSHin TIs is quantified by both the SOT-induced shift of the magnetic switching field (θSH = 1.59) and the SOT-induced ferromagnetic resonance (ST-FMR) (θSH = 1.02), which is one order of magnitude larger than that in conventional heavy metals. These results inspire a revolution of SOT-MRAM from classical to quantum materials, with great potential to further reduce the energy consumption. 
    more » « less
  3. Abstract Many key electronic technologies (e.g., large‐scale computing, machine learning, and superconducting electronics) require new memories that are at the same time fast, reliable, energy‐efficient, and of low‐impedance, which has remained a challenge. Nonvolatile magnetoresistive random access memories (MRAMs) driven by spin–orbit torques (SOTs) have promise to be faster and more energy‐efficient than conventional semiconductor and spin‐transfer‐torque magnetic memories. It is reported that the spin Hall effect of low‐resistivity Au0.25Pt0.75thin films enables ultrafast antidamping‐torque switching of SOT‐MRAM devices for current pulse widths as short as 200 ps. If combined with industrial‐quality lithography and already‐demonstrated interfacial engineering, an optimized MRAM cell based on Au0.25Pt0.75can have energy‐efficient, ultrafast, and reliable switching, for example, a write energy of <1 fJ (<50 fJ) for write error rate of 50% (<10−5) for 1 ns pulses. The antidamping torque switching of the Au0.25Pt0.75devices is ten times faster than expected from a rigid macrospin model, most likely because of the fast micromagnetics due to the enhanced nonuniformity within the free layer. The feasibility of Au0.25Pt0.75‐based SOT‐MRAMs as a candidate for ultrafast, reliable, energy‐efficient, low‐impedance, and unlimited‐endurance memory is demonstrated. 
    more » « less
  4. Antiferromagnetic oxides have recently gained much attention because of the possibility to manipulate electrically and optically the Néel vectors in these materials. Their ultrafast spin dynamics, long spin diffusion length and immunity to large magnetic fields make them attractive candidates for spintronic applications. Additionally, there have been many studies on spin wave and magnon transport in single crystals of these oxides. However, the successful applications of the antiferromagnetic oxides will require similar spin transport properties in thin films. In this work, we systematically show the sputtering deposition method for two uniaxial antiferromagnetic oxides, namely Cr2O3 and α-Fe2O3, on A-plane sapphire substrates, and identify the optimized deposition conditions for epitaxial films with low surface roughness. We also confirm the antiferromagnetic properties of the thin films. The deposition method developed in this article will be important for studying the magnon transport in these epitaxial antiferromagnetic thin films. 
    more » « less
  5. Abstract Antiferromagnets (AFMs) have the natural advantages of terahertz spin dynamics and negligible stray fields, thus appealing for use in domain-wall applications. However, their insensitive magneto-electric responses make controlling them in domain-wall devices challenging. Recent research on noncollinear chiral AFMs Mn3X (X = Sn, Ge) enabled us to detect and manipulate their magnetic octupole domain states. Here, we demonstrate a current-driven fast magnetic octupole domain-wall (MODW) motion in Mn3X. The magneto-optical Kerr observation reveals the Néel-like MODW of Mn3Ge can be accelerated up to 750 m s-1with a current density of only 7.56 × 1010A m-2without external magnetic fields. The MODWs show extremely high mobility with a small critical current density. We theoretically extend the spin-torque phenomenology for domain-wall dynamics from collinear to noncollinear magnetic systems. Our study opens a new route for antiferromagnetic domain-wall-based applications. 
    more » « less