skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climatological Aspects of Notable Tornado Events in Chile
Abstract Tornadoes in Chile seem to develop in what are called “high-shear, low-CAPE” (HSLC) environments. An analysis of convective parameters from the ERA5 reanalysis during 16 notable tornadoes in Chile showed that several increased markedly before the time of the reports. The significant tornado parameter (STP) was able to discriminate the timing and location of the tornadoes, even though it was not created with that goal. We established thresholds for the severe hazards in environments with reduced buoyancy (SHERBE) parameter (≥1) and the STP (≤−0.3) to further identify days favorable for tornado activity in Chile. The SHERBE and STP parameters were then used to conduct a climatological analysis from 1959 to 2021 of the seasonal, interannual, and latitudinal variations of the environments that might favor tornadoes. Both parameters were found to have a strong annual cycle. The largest magnitudes of STP were found to be generally confined to south-central Chile, in agreement with the (sparse) tornado record. The probability of a day with both SHERBE and STP values beyond their thresholds was greatest between May and August, which aligns with the months with the most tornado reports. The number of days with both SHERBE and STP beyond their respective thresholds was found to fluctuate interannually. This result warrants further study given the known interannual variability of synoptic and mesoscale weather in Chile. The results of this study extend our understanding of tornado environments in Chile and provide insight into their spatiotemporal variability.  more » « less
Award ID(s):
2048770
PAR ID:
10583710
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
152
Issue:
8
ISSN:
0027-0644
Page Range / eLocation ID:
1803 to 1819
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reanalysis proximity vertical profile attributes associated with long-track tornadoes [LTTs; pathlength ≥ 48 km (30 mi)] and short-track tornadoes [STTs; pathlengths < 48 km (30 mi)] for a total of 48 212 tornadoes with pathlengths ≥ 0.016 km (0.01 mi) from 1979 to 2022 in the United States were examined. Both longer- and shorter-track tornadoes were associated with vast ranges of mixed-layer convective available potential energy, together with relatively low mixed-layer lifted condensation level heights and minimal convective inhibition. A large range of 500–9000-m wind speeds and bulk wind differences, 500–3000-m streamwise vorticities, storm-relative helicities, and storm-relative wind speeds were found for STTs. In stark contrast, LTTs only occurred when these kinematic attributes were larger in amplitude through the troposphere, supporting previously documented associations between observed longer-track tornado pathlengths and faster-propagating parent storms. A novel parameter, heavily weighted by kinematic parameters and lightly weighted by thermodynamic parameters, outperformed the significant tornado parameter in differentiating environments that were more supportive of both LTTs and tornadoes rated R2= 0.79 between tornado pathlength and Bunkers’ approximate tornado duration (pathlength/VBunkers) call for improved understanding of mesocyclone periodicities, which impact tornado longevity, to improve tornado pathlength diagnoses and forecasts. Pragmatically, diagnosing LTT environments using vertical profile attributes, perhaps, is not so much a problem of determining when there might be higher expectations for LTTs, but rather a problem of when there might be lower expectations for LTTs, e.g., weaker kinematic attributes in the lower troposphere. Significance StatementThe majority of tornadoes have pathlengths less than a few kilometers. As tornado pathlengths increase, their probability of causing impacts to society also increases. We study >40 years of modeled atmospheric vertical profiles to better understand the environmental conditions that support long-track tornadoes (pathlength ≥ 48 km or ≥30 mi). Consistent with previous studies, long-track tornadoes occurred with substantially stronger vertical wind shear profiles and low-level winds compared to short-track tornadoes; however, most tornadoes did not form in environments with exceedingly large vertical instability, regardless of pathlength or intensity. A proposed composite long-track tornado parameter (LTTP) provided better discrimination between longer and shorter pathlength events compared to preexisting parameters. 
    more » « less
  2. null (Ed.)
    Abstract During 2013, multiple tornadoes occurred across Australia, leading to 147 injuries and considerable damage. This prompted speculation as to the frequency of these events in Australia, and whether 2013 constituted a record year. Leveraging media reports, public accounts, and the Bureau of Meteorology observational record, 69 tornadoes were identified for the year in comparison to the official count of 37 events. This identified set and the existing historical record were used to establish that, in terms of spatial distribution, 2013 was not abnormal relative to the existing climatology, but numerically exceeded any year in the bureau’s record. Evaluation of the environments in which these tornadoes formed illustrated that these conditions included tornado environments found elsewhere globally, but generally had a stronger dependence on shear magnitude than direction, and lower lifting condensation levels. Relative to local environment climatology, 2013 was also not anomalous. These results illustrate a range of tornadoes associated with cool season, tropical cyclone, east coast low, supercell tornado, and low shear/storm merger environments. Using this baseline, the spatial climatology from 1980 to 2019 as derived from the nonconditional frequency of favorable significant tornado parameter environments for the year is used to highlight that observations are likely an underestimation. Applying the results, discussion is made of the need to expand observing practices, climatology, forecasting guidelines for operational prediction, and improve the warning system. This highlights a need to ensure that the general public is appropriately informed of the tornado hazard in Australia, and provide them with the understanding to respond accordingly. 
    more » « less
  3. Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast U.S. storm climatology, which includes the increased presence of low-CAPE environments and tornadic nonsupercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003–18 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Last, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms toward constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for nonsupercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize postsunset—potentially compensating for minimal buoyancy. Furthermore, the existence of HSLC storm environments presunset increases the likelihood of nonsupercellular tornadoes postsunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base. 
    more » « less
  4. Abstract A localized tornado and severe hail climatology is updated and enhanced for eastern Colorado. This region is one of the most active severe weather areas in the United States because of its location immediately east of the Rocky Mountains, intrusions of Gulf of Mexico moisture into a dry climate, and various small-scale topographically forced features such as the “Denver Cyclone.” Since the 1950s, both annual tornado and severe (≥1.0 in.; 1 in. = 25.4 mm) hail reports and days have been increasing across the area, but several nonmeteorological factors distort the record. Of note is a large population bias in the severe hail data, with reports aligned along major roadways and in cities, and several field projects contributing to an absence of (E)F0 tornado reports [on the (enhanced) Fujita scale] in the 1980s. In the more consistently observed period since 1997, tornado reports and days show a slight decreasing trend while severe hail reports and days show an increasing trend, although large variability exists on the county level. Eastern Colorado tornadoes are predominantly weak, rarely above (E)F1 intensity, and with a maximum just east of the northern urban corridor. Severe hail has a maximum along the foothills and shows a trend toward a larger ratio of significant (≥2.0 in.; ≥50.8 mm) hail to severe hail reports over time. Both tornadoes and severe hail have trended toward shorter seasons since 1997, mostly attributable to an earlier end to the season. By assessing current and historical trends from a more localized perspective, small-scale climatological features and local societal impacts are exposed—features that national climatologies can miss. 
    more » « less
  5. Abstract A multiscale analysis of the environment supporting tornadoes in southeast South America (SESA) was conducted based on a self-constructed database of 74 reports. Composites of environmental and convective parameters from ERA5 were generated relative to tornado events. The distribution of the reported tornadoes maximizes over the Argentine plains, while events are rare close to the Andes and south of Sierras de Córdoba. Events are relatively common in all seasons except in winter. Proximity environment evolution shows enhanced instability, deep-layer vertical wind shear, storm-relative helicity, reduced convective inhibition, and a lowered lifting condensation level before or during the development of tornadic storms in SESA. No consistent signal in low-level wind shear is seen during tornado occurrence. However, a curved hodograph with counterclockwise rotation is present. The Significant Tornado Parameter (STP) is also maximized prior to tornadogenesis, most strongly associated with enhanced CAPE. Differences in the convective environment between tornadoes in SESA and the U.S. Great Plains are discussed. On the synoptic scale, tornado events are associated with a strong anomalous trough crossing the southern Andes that triggers lee cyclogenesis, subsequently enhancing the South American low-level jet (SALLJ) that increases moisture advection to support deep convection. This synoptic trough also enhances vertical shear that, along with enhanced instability, sustains organized convection capable of producing tornadic storms. At planetary scales, the tornadic environment is modulated by Rossby wave trains that appear to be forced by convection near northern Australia. Madden–Julian oscillation phase 3 preferentially occurs 1–2 weeks ahead of tornado occurrence. Significance StatementThe main goal of this study is to describe what atmospheric conditions (from local to global scales) are present prior to and during tornadic storms impacting southeast South America (SESA). Increasing potential for deep convection, wind shear, and potential for rotating updrafts, as well as reducing convective inhibition and cloud-base height, are predominant a few hours before and during the events in connection to low-level northerly winds enhancing moisture transport to the region. Remote convective activity near northern Australia appears to influence large-scale atmospheric circulation that subsequently triggers convective storms supporting tornadogenesis 1–2 weeks later in SESA. Our findings highlight the importance of accounting for atmospheric processes occurring at different scales to understand and predict tornado occurrences. 
    more » « less