skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clay soil amendment suppressed microbial enzymatic activities while increasing nitrogen availability in sandy soils
Abstract Conservation management practices often produced positive but limited desirable outcomes in US Southeast sandy soils, likely due to their intrinsically low clay contents that constrain the soil's capacity to preserve organic carbon (C) and nutrients. In the field, we tested the effectiveness of a novel approach, that is, clay soil amendment, to improve sandy soils. In October 2017, clay‐rich soils (25% clay) were spread at 25 metric tons ha−1 and tilled onto a sandy soil (1.9% clay) in the field, which was further mixed by light tillage at 0‐ to 15‐cm depth, followed by planting winter cover crop mixtures (cereal rye, crimson clover, and winter pea). The crop rotation was cotton and corn with cover crop mixtures planted in the winter fallow season. Soils (0–15 cm) were collected in August 2021 and subjected to physio‐biochemical analyses. Clay amendment increased soil clay content to 3.4%, which improved nitrogen (N) availability by 51% but inhibited the activities of C (β‐d‐cellubiosidase [CB]; β‐xylosidase [BX];N‐acetyl‐β‐glucosaminidase [NAG]) and N (leucine aminopeptidase [LAP]) cycling enzymes, resulting in up to 78% reduction in microbial respiration. A follow‐up kinetic study on BG and LAP enzymes suggested that clay addition can have different impacts on enzymes with diverse biological origins through distinct mechanisms. Clay addition can potentially improve sandy soils by stabilizing the organic inputs in soils. However, more research is required to understand its long‐term impacts making this approach practical.  more » « less
Award ID(s):
1941714
PAR ID:
10583718
Author(s) / Creator(s):
; ;
Publisher / Repository:
Soil Science Society of America Journal
Date Published:
Journal Name:
Soil Science Society of America Journal
Volume:
88
Issue:
5
ISSN:
0361-5995
Page Range / eLocation ID:
1647 to 1658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Perennial grain crops are expected to sequester soil carbon (C) and improve soil health due to their large and extensive root systems. To examine the rate of initial soil C accumulation in a perennial grain crop, we compared soil under perennial intermediate wheatgrass (IWG) with that under annual winter wheat 4 years after the crops were first planted. In addition, we tested the effect of three nitrogen (N) sources on C pools: Low available N (Low N (Organic N); 90 kg N ha −1 poultry litter), moderately available N (Mid N; 90 kg N ha −1 urea) and high available N (High N; 135 kg N ha −1 urea). We measured aboveground C (grain + straw), and coarse and fine root C to a depth of 1 m. Particulate organic matter (POM-C), fractionated by size, was used to indicate labile and more stabilized soil C pools. At harvest, IWG had 1.9 times more straw C and up to 15 times more root C compared with wheat. There were no differences in the size of the large (6 mm–250 µm) or medium (250–53 µm) POM-C fractions between wheat and IWG ( P > 0.05) in surface horizons (0–10 cm). Large POM-C under IWG ranged from 3.6 ± 0.3 to 4.0 ± 0.7 g C kg soil −1 across the three N rates, similar to wheat under which large POM-C ranged from 3.6 ± 1.4 to 4.7 ± 0.7 g C kg soil −1 . Averaged across N level, medium POM-C was 11.1 ± 0.8 and 11.3 ± 0.7 g C kg soil −1 for IWG and wheat, respectively. Despite IWG's greater above and belowground biomass (to 70 cm), POM-C fractions in IWG and wheat were similar. Post-hoc power analysis revealed that in order to detect differences in the labile C pool at 0–10 cm with an acceptable power (~80%) a 15% difference would be required between wheat and IWG. This demonstrates that on sandy soils with low cation exchange capacity, perennial IWG will need to be in place for longer than 4 years in order to detect an accumulated soil C difference > 15%. 
    more » « less
  2. Highlights Changes to soil properties and precipitation scenarios significantly affect the water balance in agro-hydrology. SPAW model is sensitive to simulated runoff and infiltration, but it has limitations in responding to soil compaction and organic matter change. Increasing organic matter (1% to 5%) did not significantly affect runoff or infiltration in silty and sandy loam soil. Low precipitation generates significantly lower runoff (%) and higher infiltration. Abstract. Agricultural practices can change soil properties and the amount of runoff generated from a landscape. Modeling results could be significantly different than expected if the web soil survey or other commonly used remote sensing applications are used as model inputs without site verification. This study assessed the applicability and sensitivity of the Soil-Plant-Air-Water (SPAW) Model for simulating the runoff (%) and infiltration (%) components of the water balance for various soil physical properties, cover crop, and weather variables. Soil profiles in 135 combinations were developed with three soil classes (sandy loam, silt loam, and clay), five organic matter levels (1%, 2%, 3%, 4%, and 5%), three levels of compaction (low, medium, and high), and three topsoil layer thicknesses (7.6 cm, 11.4 cm, and 15 cm). Also, three cover crop treatments were simulated by modifying surface cover and evapotranspiration during the non-growing season. Finally, two precipitation regimes were considered (Iowa City, IA, as high precipitation and Brookings, SD, as low precipitation) to simulate runoff and infiltration. In total, 810 scenarios were run, resulting in over 300 million data points. This study confirmed that soil texture, bulk density, and topsoil thickness significantly (p<0.01) influence runoff generation and infiltration percentage based on the water balance criterion. Interestingly, the SPAW model had no significant response on runoff (%) and infiltration (%) to organic matter levels changing from 1% to 5%. This simulation demonstrates that runoff estimations can be significantly influenced by soil properties that can change due to agricultural conservation practices (ACPs) or, conversely, by compaction events. Inputs to models must account for these changes rather than relying only on historical or remote sensing inputs. Keywords: Agricultural conservation practices, Conservation agriculture, Field hydrology, Infiltration, Runoff, SPAW. 
    more » « less
  3. ABSTRACT Cover crops, a promising strategy to increase soil organic carbon (SOC) storage in croplands and mitigate climate change, have typically been shown to benefit soil carbon (C) storage from increased plant C inputs. However, input‐driven C benefits may be augmented by the reduction of C outputs induced by cover crops, a process that has been tested by individual studies but has not yet been synthesized. Here we quantified the impact of cover crops on organic C loss via soil erosion (SOC erosion) and revealed the geographical variability at the global scale. We analyzed the field data from 152 paired control and cover crop treatments from 57 published studies worldwide using meta‐analysis and machine learning. The meta‐analysis results showed that cover crops widely reduced SOC erosion by an average of 68% on an annual basis, while they increased SOC stock by 14% (0–15 cm). The absolute SOC erosion reduction ranged from 0 to 18.0 Mg C−1 ha−1 year−1and showed no correlation with the SOC stock change that varied from −8.07 to 22.6 Mg C−1 ha−1 year−1at 0–15 cm depth, indicating the latter more likely related to plant C inputs. The magnitude of SOC erosion reduction was dominantly determined by topographic slope. The global map generated by machine learning showed the relative effectiveness of SOC erosion reduction mainly occurred in temperate regions, including central Europe, central‐east China, and Southern South America. Our results highlight that cover crop‐induced erosion reduction can augment SOC stock to provide additive C benefits, especially in sloping and temperate croplands, for mitigating climate change. 
    more » « less
  4. Abstract BackgroundSoil moisture, pH, dissolved organic carbon and nitrogen (DOC, DON) are important soil biogeochemical properties in switchgrass (SG) and gamagrass (GG) croplands. Yet their spatiotemporal patterns under nitrogen (N) fertilization have not been studied. AimsThe objective of this study is to investigate the main and interactive effects of N fertilization and bioenergy crop type on central tendencies and spatial heterogeneity of soil moisture, pH, DOC and DON. MethodsBased on a 3‐year long fertilization experiment in Middle Tennessee, USA, 288 samples of top horizon soils (0–15 cm) under three fertilization treatments in SG and GG croplands were collected. The fertilization treatments were no N input (NN), low N input (LN: 84 kg N ha−1in urea) and high N input (HN: 168 kg N ha−1in urea). Soil moisture, pH, DOC and DON were quantified. And their within‐plot variations and spatial distributions were achieved via descriptive and geostatistical methods. ResultsRelative to NN, LN significantly increased DOC content in SG cropland. LN also elevated within‐plot spatial heterogeneity of soil moisture, pH, DOC and DON in both croplands though GG showed more evident spatial heterogeneity than SG. Despite the pronounced patterns described above, great plot to plot variations were also revealed in each treatment. ConclusionThis study informs the generally low sensitivity of spatiotemporal responses in soil biogeochemical features to fertilizer amendments in bioenergy croplands. However, the significantly positive responses of DOC under low fertilizer input informed the best practice of optimizing agricultural nutrient amendment. 
    more » « less
  5. Abstract Flooding and salinization triggered by storm surges threaten the survival of coastal forests. After a storm surge event, soil salinity can increase by evapotranspiration or decrease by rainfall dilution. Here we used a 1D hydrological model to study the combined effect of evapotranspiration and rainfall on coastal vegetated areas. Our results shed light on tree root uptake and salinity infiltration feedback as a function of soil characteristics. As evaporation increases from 0 to 2.5 mm/day, soil salinity reaches 80 ppt in both sandy and clay loam soils in the first 5 cm of soil depth. Transpiration instead involves the root zone located in the first 40 cm of depth, affecting salinization in a complex way. In sandy loam soils, storm surge events homogeneously salinize the root zone, while in clay loam soils salinization is stratified, partially affecting tree roots. Soil salinity stratification combined with low permeability maintain root uptakes in clay loam soils 4/5‐time higher with respect to sandy loam ones. When cumulative rainfall is larger than potential evapotranspiration ETp(ETp/Rainfall ratios lower than 1), dilution promotes fast recovery to pre‐storm soil salinity conditions, especially in sandy loam soils. Field data collected after two storm surge events support the results obtained. Electrical conductivity (a proxy for salinity) increases when the ratio ETp/Rainfall is around 1.76, while recovery occurs when the ratio is around 0.92. In future climate change scenarios with higher temperatures and storm‐surge frequency, coastal vegetation will be compromised, because of soil salinity values much higher than tolerable thresholds. 
    more » « less