skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 7, 2026

Title: Late Miocene expansion of grasslands in northwest Argentina linked to shifting hydroclimate: A complex interaction among tectonics, climate, and ecology
Factors driving the late Miocene expansion of C4 grasses remain widely debated. Here, we explored the role of climate and fire in controlling the abundance of C4 vegetation in the Angastaco Basin (Palo Pintado area) and La Viña Basin, NW Argentina, during the late Miocene (ca. 14−5.33 Ma). From paleosol horizons, we reconstructed paleoclimate and paleovegetation conditions using phytolith assemblages, geochemical and isotopic proxies, and polycyclic aromatic hydrocarbons (PAHs) to determine fire input. Our paleoclimate reconstructions suggest a stable mean annual temperature (MAT) of ∼10 °C and a gradual decline in mean annual precipitation (MAP) from 1100 mm yr−1 to 850 mm yr−1. Paleovegetation reconstructions from carbon isotopic composition and phytolith assemblages show a maximum of ∼15% C4 vegetation by 6 Ma. No significant increases in fire occurrence or establishment of fire feedbacks were identified from the PAH data. Though low in abundance (∼3% on average), our data identified the presence of C4 grass by the late Miocene. The lack of significant C4 expansion in this region was likely controlled by the changing hydroclimatic conditions associated with the Andes mountain range—increasing aridity and elevation constraints along with the lack of a fire feedback might have limited the distribution of C4 vegetation.  more » « less
Award ID(s):
1854209 1850658
PAR ID:
10583735
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geological Society of America Bulletin
ISSN:
0016-7606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract C4 grassland ecosystems expanded across North America between ca. 8 and 3 Ma. Studies of ungulate enamel and environmental indicators from the middle Miocene Barstow Formation of southern California (USA) have demonstrated the presence of C4 vegetation prior to the late Miocene expansion of C4 grasslands. Fire promotes the growth of modern C4 grasslands and may have contributed to the Miocene expansion of C4 vegetation. We analyzed the concentration and accumulation rate (CHAR) of microscopic charred particles from sediment samples spanning the Barstow Formation in order to investigate the relationship between fire activity, canopy cover, and the presence of C4 vegetation. Concentration and CHAR were low throughout the formation then increased dramatically at 13.5 Ma. Enriched values of δ13C from soil organic matter and phytolith counts indicate the presence of C4 grasses and seasonally dry, open-canopy habitats at this time. The spike in concentration coincides with climatic cooling and drying in southern California after the Miocene Climatic Optimum. Increased fire activity may have contributed to habitat opening from forest to woodland and promoted the spread of C4 plants. This is the first charcoal record of fire activity from the middle Miocene of southwestern North America. 
    more » « less
  2. Tectonically driven physiographic evolution has profound effects on the climate and vegetation of Early Miocene terrestrial ecosystems across eastern Africa, creating habitat heterogeneity. Early hominoids were present on these dynamic landscapes, which likely influenced their evolutionary history. In western Kenya, a series of Early Miocene (ca.19-21Ma) fossiliferous exposures around the now-extinct Tinderet volcano document this history through preservation of hominoid fossils, fossil leaves, tree stump casts, and paleosols. Here, we use multiple proxies to reconstruct the paleoclimate and paleoecology of the fossil site Koru-16. Sedimentological and stratigraphic analysis indicate the landscape was disturbed by periodic eruptions of the volcano followed by intervals of stability, as shown by features of moderate to poorly developed paleosols. Paleoclimate estimates using the paleosol-paleoclimate model (PPM) indicate warm and wet climate conditions. Over 1000 fossil leaves were collected from two stratigraphic intervals. Seventeen morphotypes were identified across both sites, with an unequal distribution of morphotypes. Average leaf size estimate is mesophyll to megaphyll, with mean annual precipitation estimates using leaf physiognomic methods indicate >2000mm/yr. Leaf lifespan reconstructions based on leaf mass per area (MA) proxy indicate the site was predominately evergreen, with few deciduous taxa, with a MA distribution like modern tropical rainforests and tropical seasonal forests in equatorial Africa. Forest density estimates based on fossil tree stump casts indicate an open forest, with density similar to modern tropical forests that support large-bodied primates. Importantly, fossil leaves, tree stump casts, a medium-sized pythonid, a large-bodied hominoid and Proconsul africanus are all found within the same strata, indicating that these early apes lived within the reconstructed Koru-16 ecosystem. Our multi-proxy paleoclimate and paleoecological reconstructions indicate Koru-16 site sampled a very wet and warm climate that supported a tropical seasonal forest to rainforest biome. This likely provided an ideal habitat for hominoids and suggests that forested habitats played a role in the evolution of Early Miocene hominoids. 
    more » « less
  3. Abstract. Deep-time palynological studies are necessary to evaluate plant and fungal distribution under warmer-than-present scenarios such as those of the Middle Miocene. Previous palynological studies from southern McMurdo Sound, Antarctica (SMS), have provided unique documentation for Neogene environments in the Ross Sea region during a time of pronounced global warming. The present study builds on these studies and provides a new climate reconstruction using the previously published SMS pollen and plant spore data. Additionally, 44 SMS samples were reanalyzed with a focus on the fungal fraction of the section to evaluate the fungal distribution under warmer than present conditions. The probability-based climate reconstruction technique (CREST) was applied to provide a new plant-based representation of regional paleoclimate for this Miocene Climatic Optimum (MCO) locality. CREST reconstructs a paleoclimate that is warmer and significantly wetter than present in SMS during the MCO, with mean annual precipitation reconstructed at 1147 mm yr−1 (95 % confidence range: 238–2611 mm yr−1) and a maximum mean annual temperature of 10.3 ∘C (95 % confidence range: 2.0–20.2 ∘C) for the warmest intervals of the MCO. The CREST reconstruction fits within the Cfb Köppen–Geiger climate class during the MCO of SMS. This new reconstruction agrees with previous reconstructions using various geochemical proxies. The fungal palynological analyses yielded surprising results, with only a single morphotype recovered, in low abundance, with concentrations ranging up to 199 fungi per gram of dried sediment. The taxa present belongs to the Apiosporaceae family and are known to be adapted to a wide range of climate and environmental conditions. As fungi are depauperate members of the SMS MCO palynofloras and because the one morphotype recovered is cosmopolitan, using the fungi record to confirm a narrow Köppen–Geiger climate class is impossible. Overall, the study demonstrates refinement of plant-based paleoclimatic reconstructions and sheds light on the limited presence of fungi during the MCO in Antarctica. 
    more » « less
  4. Abstract Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high‐latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial–millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire‐regime variability, we synthesized 27 published sediment‐charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000–4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad‐scale environmental change, including climate warming and biome‐scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire‐regime change across our study areas during the Holocene. This finding implies broad‐scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st‐century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more. 
    more » « less
  5. The highest species richness and ecological diversity of extant squamates are in the tropics. Both their taxic richness and functional traits are predictably correlated to environmental factors, and the utility of these measures in the squamate fossil record is an emergent tool for paleoenvironmental reconstruction. Ongoing field research in the early Miocene (approx. 20–19 Mya) Tinderet sequence of western Kenya has produced a diverse record of squamates which provides environmental data for hominoid-bearing localities. The record consists of chamaeleonid, agamid, varanid, and amphisbaenid lizards as well as snake lineages including pythonids, colubroids, elapoids, and a newly discovered taxon sharing unique vertebral apomorphies with extant tropical South American Anilius scytale. Combined with additional fossils from the Eocene of North Africa, the new Tinderet taxon demonstrates an unambiguous past record of an extant neotropical snake lineage in Africa and falsifies previous vicariance hypotheses to explain the biogeographic histories of basal divisions within snakes. Recent stable isotopic and phytolith studies of Early to Middle Miocene eastern African fossil localities have indicated heterogenous environments, including C4 grasses and wood- to scrubland, associated with vertebrate faunas. The composition of squamate faunas is generally consistent with these reconstructions, with the new taxon providing precise evidence for precipitation. Comparing climate parameters of habitats for Anilius and other extant ecological analogues equivalent to those reconstructed for the eastern African Early Miocene indicates annual precipitation between 1500–2500 mm/year, consistent with wet tropical seasonal forests and rain forests. 
    more » « less