Mechanisms underlying the loss of ecological resilience and a shift to an alternate regime with lower ecosystem service provisioning continues to be a leading debate in ecology, particularly in cases where evidence points to human actions and decision-making as the primary drivers of resilience loss and regime change. In this paper, we introduce the concept of coerced resilience as a way to explore the interplay among social power, ecological resilience, and fire management, and to better understand the unintended and undesired regime changes that often surprise ecosystem managers and governing officials. Philosophically, coercion is the opposite of freedom, and uses influence or force to gain compliance among local actors. The coercive force imposed by societal laws and policies can either enhance or reduce the potential to manage for essential structures and functions of ecological systems and, therefore, can greatly alter resilience. Using a classical fire-dependent regime shift from North America (tallgrass prairie to juniper woodland), and given that coercion is widespread in fire management today, we quantify relative differences in resilience that emerge in a policy-coerced fire system compared to a theoretical, policy-free fire system. Social coercion caused large departures in the fire conditions associated with alternative grassland and juniper woodland states, and the potential for a grassland state to emerge to dominance became increasingly untenable with fire as juniper cover increased. In contrast, both a treeless, grassland regime and a co-dominated grass-tree regime emerged across a wide range of fire conditions in the absence of policy controls. The severe coercive forcing present in fire management in the Great Plains, and corresponding erosion of grassland resilience, points to the need for transformative environmental governance and the rethinking of social power structures in modern fire policies. 
                        more » 
                        « less   
                    
                            
                            Unpacking the Taxonomy of Wildland Fire Collaboratives in the United States West: Impact of Response Diversity on Social-Ecological Resilience
                        
                    
    
            Abstract We offer the first study unpacking the taxonomy of collaboratives that undertake wildland fire management and how that taxonomy relates to resilience. We developed a comprehensive inventory totaling 133 collaboratives across twelve states in the western United States. We extracted each collaborative’s vision, mission, program goals, actions, and stakeholder composition. Based on this data we summarize temporal and spatial trends in collaborative formation and discuss formation drivers. Furthermore, we developed a cluster map of collaboratives based on patterns of co-occurrence of collaborative vision, mission, and goals. We identify distinct co-occurrence patterns of themes emerging from qualitative coding of collaborative missions, visions, and objectives, and define three distinct collaborative archetypes based on these. Finally, using theory-supported actions linked to basic, adaptive, and transformative social and ecological resilience, we code for presence or absence of these outcomes for each collaborative. We present the resilience outcomes by state and discuss how various collaborative typologies differentially impact levels of social and ecological resilience. Our study concludes that fire management actions for adaptive resilience such as fuels reduction, tree thinning, and revegetation are most numerous but that there is an emergent phenomenon of collaboratives engaging in transformative resilience that are mostly citizen-led networked organizations reshaping the social and ecological landscapes to include prescribed burning on a larger scale than present. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2115169
- PAR ID:
- 10583741
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Environmental Management
- Volume:
- 75
- Issue:
- 6
- ISSN:
- 0364-152X
- Format(s):
- Medium: X Size: p. 1349-1367
- Size(s):
- p. 1349-1367
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Social connections among individuals are essential components of social‐ecological systems (SESs), enabling people to take actions to more effectively adapt or transform in response to widespread social‐ecological change. Although scholars have associated social connections and cognitions with adaptive capacity, measuring actors' social networks may further clarify pathways for bolstering resilience‐enhancing actions.We asked how social networks and socio‐cognitions, as components of adaptive capacity, and SES regime shift severity affect individual landscape management behaviours using a quantitative analysis of ego network survey data from livestock producers and landcover data on regime shift severity (i.e. juniper encroachment) in the North American Great Plains.Producers who experienced severe regime shifts or perceived high risks from such shifts were not more likely to engage in transformative behaviour like prescribed burning. Instead, we found that social network characteristics explained significant variance in transformative behaviours.Policy implications: Our results indicate that social networks enable behaviours that have the potential to transform SESs, suggesting possible leverage points for enabling capacity and coordination toward sustainability. Particularly where private lands dominate and cultural practices condition regime shifts, clarifying how social connections promote resilience may provide much needed insight to bolster adaptive capacities in the face of global change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
- 
            Abstract Cities across the globe are striving to produce viable solutions to pressing urban sustainability and resilience problems. Despite aspirations, municipal governments often need additional support in terms of knowledge, capacity, or resources to achieve transformations. Partnerships between cities and universities are one mechanism for co-producing knowledge and achieving sustained progress on complex challenges. When properly structured and effectively managed, city-university partnerships (CUPs) are purported to increase transformative capacity in city administrations and support actions which accelerate urban transformations; but these outcomes are not always achieved. As CUPs grow in numbers, there is a pressing need to identify which principles and practices facilitate transformation. Therefore, we used iterative reflective focus group sessions to develop in-depth case studies of five sustainability and resilience CUPs across three countries. The CUPs were cross-compared to explore the partnership dynamics and management practices that aid progress towards transformative goals. Observations were then related to transformative capacity typologies, and mapped to the newly described project-partnership cycle – which is useful for the management of transformative partnerships.more » « less
- 
            null (Ed.)Marine area-based conservation measures including no-take zones (areas with no fishing allowed) are often designed through lengthy processes that aim to optimize for ecological and social objectives. Their (semi) permanence generates high stakes in what seems like a one-shot game. In this paper, we theoretically and empirically explore a model of short-term area-based conservation that prioritizes adaptive co-management: temporary areas closed to fishing, designed by the fishers they affect, approved by the government, and adapted every 5 years. In this model, no-take zones are adapted through learning and trust-building between fishers and government fisheries scientists. We use integrated social-ecological theory and a case study of a network of such fisheries closures (“fishing refugia”) in northwest Mexico to hypothesize a feedback loop between trust, design, and ecological outcomes. We argue that, with temporary and adaptive area-based management, social and ecological outcomes can be mutually reinforcing as long as initial designs are ecologically “good enough” and supported in the social-ecological context. This type of adaptive management also has the potential to adapt to climate change and other social-ecological changes. This feedback loop also predicts the dangerous possibility that low trust among stakeholders may lead to poor design, lack of ecological benefits, eroding confidence in the tool’s capacity, shrinking size, and even lower likelihood of social-ecological benefits. In our case, however, this did not occur, despite poor ecological design of some areas, likely due to buffering by social network effects and alternative benefits. We discuss both the potential and the danger of temporary area-based conservation measures as a learning tool for adaptive co-management and commoning.more » « less
- 
            Abstract Adaptive management is an approach for stewardship of social–ecological systems in circumstances with high uncertainty and high controllability. Although they are largely overlooked in adaptive management (and social–ecological system management), it is important to account for spatial and temporal scales to mediate within- and cross-scale effects of management actions, because cross-scale interactions increase uncertainty and can lead to undesirable consequences. The iterative nature of an adaptive approach can be expanded to multiple scales to accommodate different stakeholder priorities and multiple ecosystem attributes. In this Forum, we introduce multiscale adaptive management of social–ecological systems, which merges adaptive management with panarchy (a multiscale model of social–ecological systems) and demonstrate the importance of this approach with case studies from the Great Plains of North America and the Platte River Basin, in the United States. Adaptive management combined with a focus on the panarchy model of social–ecological systems can help to improve the management of social–ecological systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
