skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Use of physics simulations in whole class and small group settings: Comparative case studies
Examination of matched whole class and small group discussions during use of an interactive physics simulation revealed that in the whole class discussions there was more time spent on important concepts, more time spent addressing student conceptual difficulties, and more episodes providing support for using visual features of the simulations. Abstract: This study investigates student interactions with simulations, and teacher support of those interactions, within naturalistic high school classroom settings. Two lesson sequences were conducted, one in 11 and one in 8 physics class sections, where roughly half the sections used the simulations in a small group format and matched sections used them in a whole class format. Unexpected pre/post results, previously reported, had raised questions about why whole class students, who had engaged in discussion about the simulations while observing them projected in front of the class, had performed just as well as small group students with hands-on keyboards. The present study addresses these earlier results with case studies (four matched sets of classes) of student and teacher activity during class discussions in one of the lesson sequences. Comparative analyses using classroom videotapes and student written work reveal little evidence for an advantage for the small group students for any of the conceptual and perceptual factors examined; in fact, if anything, there was a slight trend in favor of students in the whole class condition. We infer that the two formats have counter-balancing strengths and weaknesses. We recommend a mixture of the two and suggest several implications for design of instructional simulations.  more » « less
Award ID(s):
1503456
PAR ID:
10584030
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computers & Education
Volume:
86
Issue:
C
ISSN:
0360-1315
Page Range / eLocation ID:
137 to 156
Subject(s) / Keyword(s):
Physics Simulation Discussion Visualization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacristán, A. I.; Cortés-Zavala, J. C.; Ruiz-Arias, P. M. (Ed.)
    What impact, if any, do interesting lessons have on the types of questions students ask? To explore this question, we used lesson observations of six teachers from three high schools in the Northeast who were part of a larger study. Lessons come from a range of courses, spanning Algebra through Calculus. After each lesson, students reported interest via lesson experience surveys (Author, 2019). These interest measures were then used to identify each teachers’ highest and lowest interest lessons. The two lessons per teacher allows us to compare across the same set of students per teacher. We compiled 145 student questions and identified whether questions were asked within a group work setting or part of a whole class discussion. Two coders coded 10% of data to improve the rubric for type of students’ questions (what, why, how, and if) and perceived intent (factual, procedural, reasoning, and exploratory). Factual questions asked for definitions or explicit answers. Procedural questions were raised when students looked for algorithms or a solving process. Reasoning questions asked about why procedures worked, or facts were true. Exploratory questions expanded beyond the topic of focus, such as asking about changing the parameters to make sense of a problem. The remaining 90% of data were coded independently to determine interrater reliability (see Landis & Koch, 1977). A Cohen’s Kappa statistic (K=0.87, p<0.001) indicates excellent reliability. Furthermore, both coders reconciled codes before continuing with data analysis. Initial results showed differences between high- and low-interest lessons. Although students raised fewer mathematical questions in high-interest lessons (59) when compared with low-interest lessons (86), high-interest lessons contained more “exploratory” questions (10 versus 6). A chi-square test of independence shows a significant difference, χ2 (3, N = 145) = 12.99, p = .005 for types of students’ questions asked in high- and low-interest lessons. The high-interest lessons had more student questions arise during whole class discussions, whereas low-interest lessons had more student questions during group work. By partitioning each lesson into acts at points where the mathematical content shifted, we were able to examine through how many acts questions remained open. The average number of acts the students’ questions remained unanswered for high-interest lessons (2.66) was higher than that of low-interest lessons (1.68). Paired samples t-tests suggest that this difference is significant t(5)=2.58, p = 0.049. Therefore, student interest in the lesson did appear to impact the type of questions students ask. One possible reason for the differences in student questions is the nature of the lessons students found interesting, which may allow for student freedom to wonder and chase their mathematical ideas. There may be more overall student questions in low-interest lessons because of confusion, but more research is needed to unpack the reasoning behind student questions. 
    more » « less
  2. Transcripts of teaching episodes can be effective tools to understand discourse patterns in classroom instruction. According to most educational experts, sustained classroom discourse is a critical component of equitable, engaging, and rich learning environments for students. This paper describes the TalkMoves dataset, composed of 567 human annotated K-12 mathematics lesson transcripts (including entire lessons or portions of lessons) derived from video recordings. The set of transcripts primarily includes in-person lessons with whole-class discussions and/or small group work, as well as some online lessons. All of the transcripts are human-transcribed, segmented by the speaker (teacher or student), and annotated at the sentence level for ten discursive moves based on accountable talk theory. In addition, the transcripts include utterance-level information in the form of dialogue act labels based on the Switchboard Dialog Act Corpus. The dataset can be used by educators, policymakers, and researchers to understand the nature of teacher and student discourse in K-12 math classrooms. Portions of this dataset have been used to develop the TalkMoves application, which provides teachers with automated, immediate, and actionable feedback about their mathematics instruction. 
    more » « less
  3. BackgroundIncreasingly, college science courses are transitioning from a traditional lecture format to active learning because students learn more and fail less frequently when they engage in their learning through activities and discussions in class. Fear of negative evaluation (FNE), defined as a student’s sense of dread associated with being unfavorably evaluated while participating in a social situation, discourages undergraduates from participating in small group discussions, whole class discussions, and conversing one-on-one with instructors. ObjectiveThis study aims to evaluate the acceptability of a novel digital single-session intervention and to assess the feasibility of implementing it in a large enrollment college science course taught in an active learning way. MethodsTo equip undergraduates with skills to cope with FNE and bolster their confidence, clinical psychologists and biology education researchers developed Project Engage, a digital, self-guided single-session intervention for college students. It teaches students strategies for coping with FNE to bolster their confidence. Project Engage provides biologically informed psychoeducation, uses interactive elements for engagement, and helps generate a personalized action plan. We conducted a 2-armed randomized controlled trial to evaluate the acceptability and the preliminary effectiveness of Project Engage compared with an active control condition that provides information on available resources on the college campus. ResultsIn a study of 282 upper-level physiology students, participants randomized to complete Project Engage reported a greater increase in overall confidence in engaging in small group discussions (P=.01) and whole class discussions (P<.001), but not in one-on-one interactions with instructors (P=.05), from baseline to immediately after intervention outcomes, compared with participants in an active control condition. Project Engage received a good acceptability rating (1.22 on a scale of –2 to +2) and had a high completion rate (>97%). ConclusionsThis study provides a foundation for a freely available, easily accessible intervention to bolster student confidence for contributing in class. Trial RegistrationOSF Registries osf.io/4ca68 http://osf.io/4ca68 
    more » « less
  4. Learning mathematics in a student-centered, problem-based classroom requires students to develop mathematical understanding and reasoning collaboratively with others. Despite its critical role in students’ collaborative learning in groups and classrooms, evidence of student thinking has rarely been perceived and utilized as a resource for planning and teaching. This is in part because teachers have limited access to student work in paper-and-pencil classrooms. As an alternative approach to making student thinking visible and accessible, a digital collaborative platform embedded with a problem-based middle school mathematics curriculum is developed through an ongoing design-based research project (Edson & Phillips, 2021). Drawing from a subset of data collected for the larger research project, we investigated how students generated mathematical inscriptions during small group work, and how teachers used evidence of students’ solution strategies inscribed on student digital workspaces. Findings show that digital flexibility and mobility allowed students to easily explore different strategies and focus on developing mathematical big ideas, and teachers to foreground student thinking when facilitating whole-class discussions and planning for the next lesson. This study provides insights into understanding mathematics teachers’ interactions with digital curriculum resources in the pursuit of students’ meaningful engagement in making sense of mathematical ideas. 
    more » « less
  5. Historically, physics education primarily consisted of lectures in which students have a largely passive role. Proponents of educational reform have rallied around active learning to increase engagement and retention in STEM fields, particularly advocating peer interactions to build a foundation of deep understanding. However, little is known about how students' prior preparation for introductory courses impacts their mastery of course material when instructors incorporate active learning. In the present study, we examine learning outcomes in two sections of an introductory mechanics course at an institution with a wide range of students' prior mathematics preparation as assessed by quantitative SAT scores. For each of three years, one section was taught using peer instruction in which much of the class time was spent in small-group discussions between students. The other section was taught by the same instructor using interactive lectures in which discussions primarily took place between volunteers from the class and the instructor. We find that students enrolled in the peer instruction sections earned lower grades in the course than did students in the interactive sections. We also find students in the peer instruction sections with lower quantitative SAT scores showed lower gains in understanding foundational concepts as assessed by the Force Concept Inventory and were less likely to earn an A in the course than comparable students in the interactive sections. While further research is needed to confirm these results, this study suggests that peer instruction might not be the optimal pedagogy for heterogeneous populations. 
    more » « less