skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptable research-based materials for teaching quantum mechanics
We have developed a complete collection of freely available instructional materials to assist faculty in creating a student-centered quantum mechanics (QM) class that engages students while supporting them in developing both sense-making and calculational skills. Our materials are grounded in research on students' understanding of quantum mechanics and are intended to be adaptable to a variety of instructional settings and faculty styles or preferences. They were designed for a spins-first instructional paradigm and include a set of learning goals, concept (“clicker”) questions, pre-lecture surveys, and homework and exam questions, along with example lecture notes from three instructors at three different institutions. In this work, we describe what active learning can look like in the upper-division as well as describe each of the instructional tools and provide a few representative examples. We also discuss how these materials are used at each of our institutions, illustrating how they may be adapted for use at different institutions.  more » « less
Award ID(s):
2012147
PAR ID:
10584049
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Association of Physics Teachers (AAPT)
Date Published:
Journal Name:
American Journal of Physics
Volume:
91
Issue:
1
ISSN:
0002-9505
Format(s):
Medium: X Size: p. 40-47
Size(s):
p. 40-47
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Research-validated multiple-choice questions comprise an easy-to-implement instructional tool for scaffolding student learning and providing formative assessment of students’ knowledge. We present findings from the implementation of a research-validated multiple-choice question sequence on the basics of two-state quantum systems, including inner products, outer products, translation between Dirac notation and matrix representation in a particular basis, and change of basis. This study was conducted in an advanced undergraduate quantum mechanics course, in both online and in-person learning environments, across three years. For each cohort, students had their learning assessed after traditional lecture-based instruction in relevant concepts before engaging with the multiple-choice question sequence. Their performance was evaluated again afterward with a similar assessment and compared to their earlier performance. We analyze, compare, and discuss the trends observed in the three implementations. 
    more » « less
  2. Flexible classroom spaces, which have movable tables and chairs that can be easily rearranged into different layouts, make it easier for instructors to effectively implement active learning than a traditional lecture hall. Instructors can move throughout the room to interact with students during active learning, and they can rearrange the tables into small groups to facilitate conversation between students. Classroom technology, such as wall-mounted monitors and movable whiteboards, also facilitates active learning by allowing students to collaborate. In addition to enabling active learning, the flexible classroom can still be arranged in front-facing rows that support traditional lecture-based pedagogies. As a result, instructors do not have to make time- and effort-intensive changes to the way their courses are taught in order to use the flexible classroom. Instead, they can make small changes to add active learning. We are in the second year of a study of flexible classroom spaces funded by the National Science Foundation’s Division of Undergraduate Education. This project asks four research questions that investigate the relationships between the instructor, the students, and the classroom: 1) What pedagogy do instructors use in a flexible classroom space? 2) How do instructors take advantage of the instructional affordances (including the movable furniture, movable whiteboards, wall-mounted whiteboards, and wall-mounted monitors) of a flexible classroom? 3) What is the impact of faculty professional development on instructors’ use of flexible classroom spaces? and 4) How does the classroom influence the ways students interpret and engage in group learning activities? In the first year of our study we have developed five research instruments to answer these questions: a three-part classroom observation protocol, an instructor interview protocol, two instructor surveys, and a student survey. We have collected data from nine courses taught in one of ten flexible classrooms at the University of Michigan during the Fall 2018 semester. Two of these courses were first-year introduction to engineering courses co-taught by two instructors, and the other seven courses were sophomore- and junior-level core technical courses taught by one instructor. Five instructors participated in a faculty learning community that met three times during the semester to discuss active learning, to learn how to make the best use of the flexible classroom affordances, and to plan activities to implement in their courses. In each course we gathered data from the perspective of the instructor (through pre- and post-semester interviews), the researcher (through observations of three class meetings with our observation protocol), and the students (through conducting a student survey at the end of the semester). This poster presents qualitative and qualitative analyses of these data to answer our research questions, along with evidence based best practices for effectively using a flexible classroom. 
    more » « less
  3. The AMPLIFY project, funded through the NSF HSI Program, seeks to amplify the educational change leadership of Engineering Instructional Faculty (EIF) working at Hispanic Serving Institutions (HSIs). HSIs are public or private institutions of higher education enrolling over 25% full-time undergraduate Hispanic or Latinx-identifying students [1]. Many HSIs are exemplars of developing culturally responsive learning environments and supporting the persistence and access of Latinx engineering students, as well as students who identify as members of other marginalized populations [2]. Our interest in the EIF population at HSIs arises from the growing body of literature indicating that these faculty play a central role in educational change through targeted initiatives, such as student-centered support programs and the use of inclusive curricula that connect to their students’ cultural identities [3]–[7]. Our research focuses on exploring methods for amplifying the engineering educational change efforts at HSIs by 1) making visible the experiences of engineering instructional faculty at HSIs and 2) designing, implementing, and evaluating a leadership development model for engineering instructional faculty, thereby 3) equipping and supporting these faculty as they lead educational change efforts. To achieve these goals, our project team, comprising educational researchers, engineering instructional faculty, instructional designers, and graduate students from three HSIs (two majority-minority and one emerging HSI), seeks to address the following research questions: 1) What factors impact the self-efficacy and agency of EIF at HSIs to engage in educational change initiatives that encourage culturally responsive, evidence-based teaching within their classrooms, institutions, or beyond? 2) What are the necessary competencies for EIF to be leaders of this sort of educational change? 3) What individual, institutional, and professional development program features support the educational change leadership development of EIF at HSIs? 4) How does engagement in leadership development programming impact EIF educational leadership self-efficacy and agency toward developing and using culturally responsive and evidence-based approaches at HSIs? This multi-year project uses various qualitative, quantitative, and participatory research methods embedded in a series of action research cycles to provide a richer understanding of the successes and needs of EIF at HSIs [8]. The subsequent design and implementation of the AMPLIFY Institute will make visible the features and content of instructional faculty development programs that promote educational innovation at HSIs and foster a deeper understanding of the framework's impact on faculty innovation and leadership. 
    more » « less
  4. It has been well-established that concept-based active learning strategies increase student retention, improve engagement and student achievement, and reduce the performance gap of underrepresented students. Despite the evidence supporting concept-based instruction, many faculty continue to stress algorithmic problem solving. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. Our project aims to propagate the Concept Warehouse (CW), an online innovation tool that was developed in the Chemical Engineering community, into Mechanical Engineering (ME). A portion of our work focuses on content development in mechanics, and includes statics, dynamics, and to a lesser extent strength of materials. Our content development teams had created 170 statics and 253 dynamics questions. Additionally, we have developed four different simulations to be embedded in online Instructional Tools – these are interactive modules that provided different physical scenarios to help students understand important concepts in mechanics. During initial interviews, we found that potential adopters needed coaching on the benefits of concept-based instruction, training on how to use the CW, and support on how to best implement the different affordances offered by the CW. This caused a slight shift in our initial research plans, and much of our recent work has concentrated on using faculty development activities to help us advertise the CW and encourage evidence-based practices. From these activities, we are recruiting participants for surveys and interviews to help us investigate how different contexts affect the adoption of educational innovations. A set of two summer workshops attracted over 270 applicants, and over 60 participants attended each synchronous offering. Other applicants were provided links to recordings of the workshop. From these participants, we recruited 20 participants to join our Community of Practice (CoP). These members are sharing how they use the CW in their classes, especially in the virtual environment. Community members discuss using evidence-based practices, different things that the CW can do, and suggest potential improvements to the tool. They will also be interviewed to help us determine barriers to adoption, how their institutional contexts and individual epistemologies affect adoption, and how they have used the CW in their classes. Our research will help us formulate strategies that others can use when attempting to propagate pedagogical innovations. 
    more » « less
  5. Several consensus reports cite a critical need to dramatically increase the number and diversity of STEM graduates over the next decade. They conclude that a change to evidence-based instructional practices, such as concept-based active learning, is needed. Concept-based active learning involves the use of activity-based pedagogies whose primary objectives are to make students value deep conceptual understanding (instead of only factual knowledge) and then to facilitate their development of that understanding. Concept-based active learning has been shown to increase academic engagement and student achievement, to significantly improve student retention in academic programs, and to reduce the performance gap of underrepresented students. Fostering students' mastery of fundamental concepts is central to real world problem solving, including several elements of engineering practice. Unfortunately, simply proving that these instructional practices are more effective than traditional methods for promoting student learning, for increasing retention in academic programs, and for improving ability in professional practice is not enough to ensure widespread pedagogical change. In fact, the biggest challenge to improving STEM education is not the need to develop more effective instructional practices, but to find ways to get faculty to adopt the evidence-based pedagogies that already exist. In this project we seek to propagate the Concept Warehouse, a technological innovation designed to foster concept-based active learning, into Mechanical Engineering (ME) and to study student learning with this tool in five diverse institutional settings. The Concept Warehouse (CW) is a web-based instructional tool that we developed for Chemical Engineering (ChE) faculty. It houses over 3,500 ConcepTests, which are short questions that can rapidly be deployed to engage students in concept-oriented thinking and/or to assess students’ conceptual knowledge, along with more extensive concept-based active learning tools. The CW has grown rapidly during this project and now has over 1,600 faculty accounts and over 37,000 student users. New ConcepTests were created during the current reporting period; the current numbers of questions for Statics, Dynamics, and Mechanics of Materials are 342, 410, and 41, respectively. A detailed review process is in progress, and will continue through the no-cost extension year, to refine question clarity and to identify types of new questions to fill gaps in content coverage. There have been 497 new faculty accounts created after June 30, 2018, and 3,035 unique students have answered these mechanics questions in the CW. We continue to analyze instructor interviews, focusing on 11 cases, all of whom participated in the CW Community of Practice (CoP). For six participants, we were able to compare use of the CW both before and after participating in professional development activities (workshops and/or a community or practice). Interview results have been coded and are currently being analyzed. To examine student learning, we recruited faculty to participate in deploying four common questions in both statics and dynamics. In statics, each instructor agreed to deploy the same four questions (one each for Rigid Body Equilibrium, Trusses, Frames, and Friction) among their overall deployments of the CW. In addition to answering the question, students were also asked to provide a written explanation to explain their reasoning, to rate the confidence of their answers, and to rate the degree to which the questions were clear and promoted deep thinking. The analysis to date has resulted in a Work-In-Progress paper presented at ASEE 2022, reporting a cross-case comparison of two instructors and a Work-In-Progress paper to be presented at ASEE 2023 analyzing students’ metacognitive reflections of concept questions. 
    more » « less