skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 3, 2026

Title: SeamFit: Towards Practical Smart Clothing for Automatic Exercise Logging
Smart clothing has exhibited impressive body pose/movement tracking capabilities while preserving the soft, comfortable, and familiar nature of clothing. For practical everyday use, smart clothing should (1) be available in a range of sizes to accommodate different fit preferences, and (2) be washable to allow repeated use. In SeamFit, we demonstrate washable T-shirts, embedded with capacitive seam electrodes, available in three different sizes, for exercise logging. Our T-shirt design, customized signal processing & machine learning pipeline allow the SeamFit system to generalize across users, fits, and wash cycles. Prior wearable exercise logging solutions, which often attach a miniaturized sensor to a body location, struggle to track exercises that mainly involve other body parts. SeamFit T-shirt naturally covers a large area of the body and still tracks exercises that mainly involve uncovered joints (e.g., elbows and the lower body). In a user study with 15 participants performing 14 exercises, SeamFit detects exercises with an accuracy of 89%, classifies exercises with an accuracy of 93.4%, and counts exercises with an error of 0.9 counts, on average. SeamFit is a step towards practical smart clothing for everyday uses.  more » « less
Award ID(s):
2239569
PAR ID:
10584083
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
9
Issue:
1
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electronic textiles capable of sensing, powering, and communication can be used to non-intrusively monitor human health during daily life. However, achieving these functionalities with clothing is challenging because of limitations in the electronic performance, flexibility and robustness of the underlying materials, which must endure repeated mechanical, thermal and chemical stresses during daily use. Here, we demonstrate electronic textile systems with functionalities in near-field powering and communication created by digital embroidery of liquid metal fibers. Owing to the unique electrical and mechanical properties of the liquid metal fibers, these electronic textiles can conform to body surfaces and establish robust wireless connectivity with nearby wearable or implantable devices, even during strenuous exercise. By transferring optimized electromagnetic patterns onto clothing in this way, we demonstrate a washable electronic shirt that can be wirelessly powered by a smartphone and continuously monitor axillary temperature without interfering with daily activities. 
    more » « less
  2. Physical therapy (PT) is crucial for patients to restore and maintain mobility, function, and well-being. Many on-site activities and body exercises are performed under the supervision of therapists or clinicians. However, the postures of some exercises at home cannot be performed accurately due to the lack of supervision, quality assessment, and self-correction. Therefore, in this paper, we design a new framework, PhysiQ, that continuously tracks and quantitatively measures people's off-site exercise activity through passive sensory detection. In the framework, we create a novel multi-task spatio-temporal Siamese Neural Network that measures the absolute quality through classification and relative quality based on an individual's PT progress through similarity comparison. PhysiQ digitizes and evaluates exercises in three different metrics: range of motions, stability, and repetition. We collect and annotate 31 participants' motion data with different levels of quality. Evaluation results show that PhysiQ recognizes the nuances in exercises, works with different numbers of repetitions, and achieves an accuracy of 89.67% in detecting levels of exercise quality and an average R-squared correlation of 0.949 in similarity comparison. 
    more » « less
  3. Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice. 
    more » « less
  4. Wearable devices are a popular class of portable ubiquitous technology. These devices are available in a variety of forms, ranging from smart glasses to smart rings. The fact that smart wearable devices are attached to the body makes them particularly suitable to be integrated into people’s daily lives. Thus, we propose that wearables can be particularly useful to help people make sense of different kinds of information and situations in the course of their everyday activities, in other words, to help support learning in everyday life. Further, different forms of wearables have different affordances leading to varying perceptions and preferences, depending on the purpose and context of use. While there is research on wearable use in the learning context, it is mostly limited to specific settings and usually only explores wearable use for a specific task. This paper presents an online survey with 70 participants conducted to understand users’ preferences and perceptions of how wearables may be used to support learning in their everyday life. Multiple ways of use of wearable for learning were proposed. Asking for information was the most common learning-oriented use. The smartwatch/wristband, followed by the smart glasses, was the most preferred wearable form factor to support learning. Our survey results also showed that the choice of wearable type to use for learning is associated with prior wearable experience and that perceived social influence of wearables decreases significantly with gain in the experience with a fitness tracker. Overall, our study indicates that wearable devices have untapped potential to be used for learning in daily life and different form factors are perceived to afford different functions and used for different purposes. 
    more » « less
  5. null (Ed.)
    Perspiration level monitoring enables numerous applications such as physical condition estimation, personal comfort monitoring, health/exercise monitoring, and inference of environmental conditions of the user. Prior works on perspiration (sweat) sensing require users to manually hold a device or attach adhesive sensors directly onto their skin, limiting user mobility and comfort. In this paper, we present a low-cost and novel wearable sensor system that is able to accurately estimate an individual's sweat level based on measuring moisture. The sensor is designed in a threadlike form factor, allowing it to be sewn into the seams of clothing, rather than having to act as a standalone sensor that the user must attach to their body. The system is comprised of multiple cotton-covered conductive threads that are braided into one sensor. When a person sweats, the resistance between the braided conductive threads changes as moisture becomes trapped in the cotton covering of the threads. The braided three-dimensional structure allows for robust estimation of perspiration level in the presence of external forces that may cause sensor distortion, such as motion. We characterize the relationship between the volume of sweat and measured resistance between the braided threads. Finally, we weave our sensors into the fabric of a shirt and conduct on-body experiments to study users' sweating level through various activities. 
    more » « less