This work coordinates data collection using standard equipment and protocols at North American and Russian sites. These data sets provide the baseline to assess the future rates of change in near-surface permafrost temperatures and permafrost boundaries, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. The work represents the United States (US) contribution to the ongoing activities of the Global Terrestrial Network for Permafrost that obtains temperatures in a large number of globally distributed monitoring sites in order to provide a snapshot of permafrost temperatures in both time and space. The US National Science Foundation (NSF) funded this work with award #0520578, #0632400, #0856864, and #1304271.
more »
« less
Thermal state of permafrost in North America - annually observed ground temperatures, Alaska, 2024
This work coordinates data collection using standard equipment and protocols at North American and Russian sites. These data sets provide the baseline to assess the future rates of change in near-surface permafrost temperatures and permafrost boundaries, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. The work represents the United States (US) contribution to the ongoing activities of the Global Terrestrial Network for Permafrost that obtains temperatures in a large number of globally distributed monitoring sites in order to provide a snapshot of permafrost temperatures in both time and space. The US National Science Foundation funded this work with award #0520578, #0632400, #0856864, and #1304271.
more »
« less
- Award ID(s):
- 1832238
- PAR ID:
- 10584208
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- FROZEN GROUND PERMAFROST SOIL TEMPERATURE GROUND TEMPERATURE
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This work coordinates data collection using standard equipment and protocols at the Alaskan and Russian borehole sites. These borehole temperature data sets provide the baseline to reconstruct past surface temperatures, to assess the future rates of change in near-surface permafrost temperatures and permafrost boundaries, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. This represents the Russia contribution to the ongoing activities of Global Terrestrial Network for Permafrost that obtains temperatures in a large number of globally distributed boreholes in order to provide a snapshot of permafrost temperatures in both time and space. Included are files with the depth, temperature, and date of soil sampled at a number of sites. Site information (site name, latitude, longitude) by file name can be found in the file 'metadata_2022.csv'.more » « less
-
This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project is to better understand ice-rich permafrost at local, regional, and circumpolar scales. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural environment and next to the infrastructure/disturbed environment at Utqiagvik, Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches.more » « less
-
The Permafrost Grown project (NSF RISE Award # 2126965) is co-producing knowledge with farmers in Alaska (Tanana Valley and Bethel) to investigate the interactions and feedbacks between permafrost and agriculture. Additional project objectives include understanding legacy effects over a 120-year cultivation history in the Tanana Valley, evaluating the socio-economic effects of permafrost-agriculture interactions and provide decision making tools for farmers and finally to utilize education and outreach activities to share knowledge with the farmers and the public. The project focuses on in-the-ground farming in a range of cultivation types including crops, peonies and livestock. The project is funded through the National Science Foundation's (NSF) Navigating the New Arctic Initiative. Temperature monitoring of various crop types with and without extension techniques was done at two farm sites in Fairbanks, Alaska (AK) during the 2022 growing season. This work was done through the Permafrost Grown Project as part of an effort to determine the thermal impact of commonly used agricultural seasonal-extension techniques, crop types and their potential impact on permafrost. Both farms are small scale, each cultivating on about 1 acre and both grow diverse crops. Both farms use various season extension techniques, including the use of plastic mulch to artificially warm soils and/or help control weeds. This dataset provides monitoring of ground temperatures at four depths (ground surface, 15 centimeter (cm), 50 cm and 100 cm) of various crops (carrots, cabbage, beets, onions, and squash).more » « less
-
Abstract The Arctic has warmed three times the rate of the global average, resulting in extensive thaw of perennially frozen ground known as permafrost. While it is well understood that permafrost thaw will continue and likely accelerate, thaw rates are nonuniform due, in part, to the expansion of Arctic trees and tall shrubs that may increase ground temperatures. However, in permafrost regions with short‐stature vegetation (height < 40 cm), our understanding of how ground temperature regimes vary by vegetation type is limited as these sites are generally found in remote high‐latitude regions that lack in situ ground temperature measurements. This study aims to overcome this limitation by leveraging in situ shallow ground temperatures, remote sensing observations, and topographic parameters across 22 sites with varying types of short‐stature vegetation on Baffin Island, Canada, a remote region underlain by rapidly warming continuous permafrost. Results suggest that the type of short‐stature vegetation does not necessarily correspond to a distinct shallow ground temperature regime. Instead, in permafrost regions with short‐stature vegetation, factors that control snow duration, such as microtopography, may have a larger effect on evolving ground temperature regimes and thus permafrost vulnerability. These findings suggest that anticipating permafrost thaw in regions of short‐stature vegetation may be more nuanced than previously suggested.more » « less
An official website of the United States government
