skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resilience and adaptation to the effects of permafrost degradation induced coastal erosion - continuously observed ground temperatures, Utqiagvik, Alaska, 2021-2022
This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project is to better understand ice-rich permafrost at local, regional, and circumpolar scales. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural environment and next to the infrastructure/disturbed environment at Utqiagvik, Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches.  more » « less
Award ID(s):
1927708
PAR ID:
10657923
Author(s) / Creator(s):
; ;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
PERMAFROST FROZEN GROUND SOIL TEMPERATURE ALASKA UTQIAGVIK NORTH AMERICA
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project is to better understand ice-rich permafrost at local, regional, and circumpolar scales. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural environment and next to the infrastructure/disturbed environment at Utqiagvik, Point Lay, and Wainwright in Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. Update: Filename nomenclature has been changed from US_PIP_### to US_UTQ_### in order to separate different site location data. 
    more » « less
  2. This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project, is to better understand the effects climate change imposes on society and the built environment and develop risk assessments for future adaptive planning. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural and disturbed environment in the vicinity of the city of Fairbanks, Alaska. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. 
    more » « less
  3. This project is part of Navigating the New Arctic (NNA) which addresses converging scientific challenges in the rapidly changing Arctic. Specifically, the goal of this project, is to better understand the effects climate change imposes on society and the built environment and develop risk assessments for future adaptive planning. This dataset provides ground temperature data in the active layer and near-surface permafrost to provide a baseline for assessing the future changes in the near-surface temperatures in the natural and disturbed environment in the vicinity of the city of Fairbanks, Alaska, United States and the city of Whitehorse, Yukon, Canada. Collected ground temperature data are intended to help researchers, communities and public with ongoing activities to mitigate a threat of thawing permafrost on the local and regional scale, and to provide spatial data for validation of climate scenario models and temperature reanalysis approaches. 
    more » « less
  4. The Arctic is experiencing accelerated warming at up to four times the rate of temperate regions, driving permafrost thawing and ground ice melting, which, in turn lead to coastal bluff failure and accelerated erosion. The primary mechanisms behind Arctic coastal bluff failures include the formation of thermoerosional niches at the bluff’s toe and warming-induced reductions in ground strength, making Arctic coastal bluff failure a complex thermal-mechanical coupling process. Most existing studies have focused on coastal bluff failures in temperate regions, but the unique failure mechanism in the Arctic remain underexplored. This study addresses this gap by developing a thermalmechanical coupling model to study the failure mechanism of a permafrost bluff failure that occurred in 2023–2024 in Utqia˙gvik, Alaska. The model incorporates pore ice phase change, thaw-induced reductions in permafrost stiffness and strength, and the effects of thermoerosional niches, cracks, and ice wedges. Stability analysis is conducted via the local factor of safety (LFS) method to account for spatial variations in permafrost strength and stiffness. Ground-penetrating radar (GPR) data from the August 2024 site survey were employed to characterize site conditions, and ground temperature data were used to validate the model. The results revealed two primary failure zones: one near the ground surface and another at the bluff’s toe. The total area of these two failure zones expanded with ongoing thaw. Besides, the results indicated that the increase in thaw thickness, the growth in niche length, and the presence of cracks exacerbate bluff instability, and bluff failure is likely to initiate along the ice wedge–permafrost interface. 
    more » « less
  5. Ground ice content of the Arctic soils largely dictates the effects of climate change-induced permafrost degradation and top ground destabilization. The current circumarctic information on ground ice content is overly coarse for many key applications, including assessments of hazards to Arctic infrastructure, while detailed data are restricted to very few regions. This study aims to address these gaps by presenting spatially comprehensive data on pore and segregated ground ice content across the Northern Hemisphere permafrost region at a 1-km resolution. First, ground ice content datasets (n=437 and 380 1-km grid cells for volumetric and gravimetric ice content, respectively) were compiled from field observations over the permafrost region. Spatial estimates of ground ice content in the near-surface permafrost north of the 30th parallel north were then produced by relating observed ground ice content to physically relevant environmental data layers of climate, soil, topography, and vegetation properties using a statistical modelling framework. The produced data show that ground ice content varies substantially across the permafrost region. The highest ice contents are found on peat-dominated Arctic lowlands and along major river basins. Low ice contents are associated with mountainous areas and many sporadic and isolated permafrost regions. The modelling yields relatively small prediction errors (a mean absolute error of 13.6 % volumetric ice content) over evaluation data and broadly congruent spatial distributions with earlier regional-scale studies. The presented data allow the consideration of ground ice content in various geomorphological, ecological, and environmental impact assessment applications at a scale that is more relevant than previous products. The produced ground ice data are available in the supplement for this study and at Zenodo https://doi.org/10.5281/zenodo.7009875 (Karjalainen et al., 2022). 
    more » « less