Synchronous condensers (SynCons) have been deployed in power grids penetrated by inverter-based resources (IBRs) worldwide to strengthen and stabilize the grids. This paper examines which machine parameters influence IBR weak grid stability and whether excitation systems also play a role. Four types of stability scenarios are examined, including transient stability, oscillations of a few Hz, oscillations near 9 Hz, and dynamic voltage stability. It is shown that the most influential machine parameter varies for the different types of stability issues. While minimization of field winding inductance (typically the major component of the machine transient reactance, X′d) can significantly improve transient stability, voltage stability, and low-frequency oscillatory stability, this parameter has no influence on relatively rapid oscillations. On the other hand, minimizing rotor damper winding inductance (typically the major component of the machine subtransient reactance, X′′d) improves the 9-Hz oscillation stability, but with insignificant influence on the other three types of stability. Furthermore, the excitation system characteristics show negligible influence for any of the scenarios. In addition to the simulation studies, we show how the operational reactances are associated with the machine's dq impedance viewed from the terminal bus and how a SynCon reduces the equivalent grid impedance, thereby improving weak grid stability. Finally, it is concluded that minimization of both transient and subtransient direct-axis reactances should help in a range of stability scenarios, while cautions should be taken when dealing with quadrature-axis transient reactances.
more »
« less
Transient Algebraic Impedance Derivations and Applications for PLL-Synchronized IBRs
In system-level dynamic studies, grid-following inverter-based resources (IBRs) have been treated as current sources synchronized to the main grid via phase-locked-loops (PLL), while the interconnected transmission line is usually treated as a constant complex impedance. In this letter, we present the derivation of transient algebraic impedance of the transmission line and demonstrate its superiority over constant impedance. We show significant accuracy improvement in predicting transient stability and oscillations when the constant impedance is replaced by a transient algebraic impedance. Furthermore, we derive a small-signal model by use of the transient algebraic impedance and this model is successful in explaining the interaction between the PLL and the grid. On the other hand, if constant impedance is assumed, such stability issues cannot be predicted.
more »
« less
- Award ID(s):
- 2103480
- PAR ID:
- 10584444
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Power Delivery
- Volume:
- 39
- Issue:
- 1
- ISSN:
- 0885-8977
- Page Range / eLocation ID:
- 683 to 686
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Efficient Simulation of Cascading Outages Using an Energy Function-Embedded Quasi-Steady-State ModelThis paper proposed an energy function-embedded quasi-steady-state model for efficient simulation of cascading outages on a power grid while addressing transient stability concerns. Compared to quasi-steady-state models, the proposed model incorporates short-term dynamic simulation and an energy function method to efficiently evaluate the transient stability of a power grid together with outage propagation without transient stability simulation. Cascading outage simulation using the proposed model conducts three steps for each disturbance such as a line outage. First, it performs time-domain simulation for a short term to obtain a post-disturbance trajectory. Second, along the trajectory, the system state with the local maximum potential energy is found and used as the initial point to search for a relevant unstable equilibrium by Newton's method. Third, the transient energy margin is estimated based on this unstable equilibrium to predict an out-of-step condition with generators. The proposed energy function-embedded quasi-steady-state model is tested in terms of its accuracy and time performance on an NPCC 140-bus power system and compared to a quasi-steady-state model embedding transient stability simulation.more » « less
-
null (Ed.)Increased capacity associated with renewable energy sources has created a need for improved methods for controlling power flows from inverter-based generation. This research provides a comparative study of finite-control-set model predictive current control (FCS-MPC-based) with respect to conventional proportional-integral-based (PI-based) synchronous current control for a three-phase voltage source inverter (VSI). The inverter is accompanied by an inductive-capacitive-inductive (LCL) filter to attenuate pulse width modulation (PWM) switching harmonics. However, an LCL filter introduces a resonance near to the control stability boundary, giving rise to substantial complexity from a control perspective. In order to avoid potential instability caused by the resonance, active damping can be included in the PI-based current control. Though properly designed active damping can improve inverter stability, in practice the robustness of standard PI control is not attainable due to variability in the grid inductance at the point of common coupling (PCC). This is due to impedance variations causing large shifts in the LCL resonance frequency. Weak grid conditions (i.e., a low short-circuit ratio) and a correspondingly high line impedance are particularly susceptible to LCL induced resonance instabilities. As an approach to operate with grid impedance variations and weak grid conditions, FCS-MPC has the potential to produce superior performance compared to PI-based current control methods. This comparative study indicates that FCS-MPC has improved resonance damping and fast dynamic capability in a system with renewable energy sources under weak grid conditions. Detailed results from MATLAB/SimPower are presented to validate the suggested FCS-MPC method where it is robust to uncertainty in the grid impedance variations. Overall results indicate an improvement over conventional PI-based current control methods.more » « less
-
Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth’s vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth’s crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD’s inducing fields and the complex ground (3-D) electric field response, and the resulting alignment of the ground electric fields with the power transmission line paths. This is informing our efforts to provide a set of real-time tools for power grid operators to use in mitigating damage from space weather events.more » « less
-
Electric vehicles (EVs) rely on robust inverter-to-motor connections to ensure high-efficiency operation under the challenging conditions imposed by wide-bandgap (WBG) semiconductors. High switching frequencies and steep voltage rise times in WBG inverters lead to repetitive transient overvoltages, causing insulation degradation and premature motor winding failure. This study proposes a wideband (WB) model of EV cables, developed in EMTP-RV, to improve transient voltage prediction accuracy compared to the traditional constant parameter (CP) model. Using a commercially available EV-dedicated cable, the WB model incorporates frequency-dependent parasitic effects calculated through the vector fitting technique. The motor design is supported by COMSOL Multiphysics and MATLAB 2023 simulations, leveraging the multi-conductor transmission line (MCTL) model for validation. Using practical data from the Toyota Prius 2010 model, including cable length, motor specifications, and power ratings, transient overvoltages generated by high-frequency inverters are studied. The proposed model demonstrates improved alignment with real-world scenarios, providing valuable insights into optimizing insulation systems for EV applications.more » « less
An official website of the United States government

