skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Life Cycle Assessment and Life Cycle Cost Analysis of Repurposing Decommissioned Wind Turbine Blades as High-Voltage Transmission Poles
Wind energy is widely deployed and will likely grow in service of reducing the world’s dependency on fossil fuels. The first generation of wind turbines are now coming to the end of their service lives, and there are limited options for the reuse or recycling of the composite materials they are made of. Current literature has verified that there is no existing recycling pathway (i.e., mechanical, chemical, thermal methods of recovery, etc.) for end-of-life materials in wind blades that can meet cost parity with landfilling in the US. However, to the authors’ knowledge there is no study to date that uncovers the cost structures associated with repurposing wind turbine blades in the US. Repurposing could offer a cost-competitive advantage through displacement of higher-value products, rather than materials or chemical constituents alone. This study implements life cycle assessment (LCA) and life cycle cost analysis (LCC) to assess the environmental and financial implications at each stage of repurposing wind turbine blades as the primary load-carrying elements for high-voltage transmission line structures in the United States. This case study contribution to knowledge is based on the successful management of construction waste by analyzing an application for repurposing construction demolition waste. Specifically, this study presents an environmental and financial analysis of repurposing wind turbine blades as transmission line poles. Under this case study, our results show that BladePoles have lower greenhouse gas emissions than steel poles, and we anticipate BladePoles will be less costly than steel poles. Overall emissions are most sensitive to combustion emissions, driven primarily by transportation distance and hours of required crane operations during the installation process. Compared to other evaluated recycling methods, repurposing wind blades as BladePoles has the least overall global warming potential.  more » « less
Award ID(s):
2016409
PAR ID:
10584572
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Construction Engineering and Management
Volume:
150
Issue:
5
ISSN:
0733-9364
Subject(s) / Keyword(s):
wind energy, electricity distribution and transmission, wind turbine blades, life cycle assessment
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes repurposing projects using decommissioned wind turbine blades in bridges conducted under a multinational research project entitled “Re-Wind”. Repurposing is defined by the Re-Wind Network as the re-engineering, redesigning, and remanufacturing of a wind blade that has reached the end of its life on a turbine and taken out of service and then reused as a load-bearing structural element in a new structure (e.g., bridge, transmission pole, sound barrier, seawall, shelter). The issue of end-of-life of wind turbine blades is becoming a significant sustainability concern for wind turbine manufacturers, many of whom have committed to the 2030 or 2040 sustainability goals that include zero-waste for their products. Repurposing is the most sustainable end-of-life solution for wind turbine blades from an environmental, economic, and social perspective. The Network has designed and constructed two full-size pedestrian/cycle bridges—one on a greenway in Cork, Ireland and the other in a quarry in Draperstown, Northern Ireland, UK. The paper describes the design, testing, and construction of the two bridges and provides cost data for the bridges. Two additional bridges that are currently being designed for construction in Atlanta, GA, USA are also described. The paper also presents a step-by-step procedure for designing and building civil structures using decommissioned wind turbine blades. The steps are: project planning and funding, blade sourcing, blade geometric characterization, material testing, structural testing, designing, cost estimating, and construction. 
    more » « less
  2. Zingoni, A. (Ed.)
    This paper presents two case studies of the repurposing projects of decommissioned wind turbine blades in architectural and structural engineering applications conducted under a multinational research project is entitled “Re-Wind” (www.re-wind.info) that was funded by the US-Ireland Tripartite program. The group has worked closely together in the Re-Wind Network over the past five years to conduct research on the topic of repurposing of decommissioned FRP wind turbine blades. Repurposing is defined by the ReWind team as the reverse engineering, redesigning and remanufacturing of a wind blade that has reached the end of its life on a turbine and taken out of service and then reused as a load-bearing structural element in a new structure (e.g., bridge, transmission pole, sound barrier, sea-wall, shelter). Further repurposing examples are provided in a publicly available Re-Wind Design Catalog. The Re-Wind Network was the first group to develop practical methods and design procedures to make these new “second-life” structures. The Network has developed design and construction details for two full-size prototype demonstration structures – a pedestrian bridge constructed in Cork, Ireland in January 2022 and a transmission pole to be constructed at the Smoky Hills Wind Farm in Lincoln and Ellsworth Counties, in Kansas, USA in the late 2022. The paper provides details on the planning, design, analysis, testing and construction of these two demonstration projects. 
    more » « less
  3. The production of wind energy worldwide has increased 20-fold since 2001. Composite material wind turbine blades, typically designed for a 20-year fatigue life, are beginning to come out of service in large numbers. In general, these de-commission blades, composed primarily of glass fibers in a thermoset matrix, are demolished and landfilled. There is little motivation for recycling the composite materials, as the processes for reclaiming the fibers (solvolysis, pyrolysis) have not been proven to be economically viable. This research seeks to establish structural re-use applications for wind turbine blades in civil engineering infrastructure, hypothesizing that advanced composite materials may be an attractive alternative to conventional infrastructure materials (e.g. steel, reinforced concrete). This paper presents an analysis and materials characterization of a 47 meter Clipper C96 wind blade. The primarily numerical analysis is accompanied by materials characterization taken from an un-used Clipper blade donated to the project from the Wind Turbine Testing Center (WTTC). The paper presents a brief background on wind turbine blade adaptive re-use, proposing a hypothetical load bearing application of the Clipper wind blade as an electrical transmission tower structure carrying axial compression, along with flapwise and edgewise bending forces. The paper summarizes the composite laminates and cross-section geometries of the blade and establishes the axial and flexural stiffnesses of the blade at multiple sections along the blade length. From a first-order estimation of applied loads for the tower application, the resulting stresses in the composite materials are estimated and compared to the design material properties for the wind blade as originally constructed. 
    more » « less
  4. The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 16.8 million tons of waste from wind blades will need to be managed globally by 2030, increasing to 39.8 million tons by 2050. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents an example of the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory. 
    more » « less
  5. The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 4.2 million tons of waste from wind blades will need to be managed globally by 2035, increasing to 16.3 million tons by 2055. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents a method for generating the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory. 
    more » « less