skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive Reuse of FRP Composite Wind Turbine Blades for Civil Infrastructure Construction
The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 16.8 million tons of waste from wind blades will need to be managed globally by 2030, increasing to 39.8 million tons by 2050. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents an example of the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory.  more » « less
Award ID(s):
1701413
PAR ID:
10094861
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
9th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2018)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 4.2 million tons of waste from wind blades will need to be managed globally by 2035, increasing to 16.3 million tons by 2055. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents a method for generating the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory. 
    more » « less
  2. The very rapid growth in wind energy technology in the last 15 years has led to a rapid growth in the amount of non–biodegradable, thermosetting FRP composite materials used in wind turbine blades that will need to be managed of in the near future. A typical 2.0 MW turbine with three 50 m blades has approximately 20 tonnes of FRP material and an 8 MW turbine has approximately 80 tonnes of FRP material (1 MW ~ 10 tonnes of FRP). Calculations show that 4.2 million tonnes will need to be managed globally by 2035 and 16.3 million tonnes by 2055 if wind turbine construction continues at current levels and with current technology. Three major categories of end-of-life (EOL) options are possible – disposal, recovery and reuse. Reuse options are the primary focus of this paper since landfilling and incineration are environmentally harmful and recovery recycling methods are not economical. The current work reports on different architectural and structural options for reusing parts of wind turbine blades in new or retrofitted housing projects. Large-sized FRP pieces that can be salvaged from the turbine blades and potentially useful in infrastructure projects where harsh environmental conditions (water and high humidity) exist. Their noncorrosive properties make them durable construction materials. The approach presented is to cut the decommissioned wind turbine blades into segments that can be repurposed for structural and architectural applications for affordable housing projects. The geographical focus of the designs presented in this paper is in the coastal region of the Yucatan on the Gulf of Mexico where low quality masonry block informal housing is vulnerable to severe hurricanes and flooding. In what follows, a prototype 100m long wind blade model provided by Sandia National Laboratories is used as a demonstration to show how a wind blade can be broken down into parts, thus making it possible to envision architectural applications for the different wind blade segments. 
    more » « less
  3. Worldwide wind energy generation capacity has grown rapidly over the past several decades, and wind turbines installed at the beginning of this wave of growth are approaching the end of their design lifetimes. As an increasing number of wind power plants reach their end of life, both decommissioning and repowering (i.e., dismantling or refurbishing existing turbines and commissioning new ones) will produce waste material from the retired wind turbines, foundations, and balance of plant. However, the amount and type of waste, particularly for wind blades, is often mischaracterized. Although wind turbine components are largely recyclable, the blades are typically made of fiberglass composites, which can present challenges for material recovery and reuse. Within the USA, the accumulation of wind turbine blades in landfills has raised questions about whether the continued expansion of wind energy is sustainable if it results in substantial future waste. This study compares the mass and volume of potential global wind blade waste to other waste streams. It also discusses the materials used to manufacture wind turbine blades and summarizes current options for material redesign, recycling (recovery and reuse), repurposing, and disposal of used blades. The analysis indicates that, although wind turbine blades could represent 14% of the composite market by 2027, the potential future mass and volume of wind turbine blade waste is relatively small compared to other industries. These findings suggest that although the development of scalable, economically viable, and environmentally sustainable methods for wind turbine manufacturing, repurposing, and recycling is important, it may make sense to take advantage of synergies among multiple industries in recycling composite waste, rather than focusing solely on wind turbine blades. From a global perspective, larger sustainability, recycling, and waste stream reduction impacts can be made in other industries, such as transportation and construction. 
    more » « less
  4. This paper discusses the opening moves of an international multidisciplinary research project involving researchers from Ireland, Northern Ireland and the US, aiming to address the global problem of end-of-life disposal of wind turbine blades. The problem is one of enormous scale on several levels: a typical 2.0 MW turbine has three 50m long blades containing around 20 tonnes of fibre reinforced plastic (FRP). It is estimated that by 2050, 39.8 million tonnes of material from the global wind industry will await disposal. Whilst land-fill is the current means of disposal, the nature of the materials used in the composite construction of wind blades (glass and carbon fibres, resins, foams) means it unsustainable. Hence, the project sets out to deploy innovative design and logistical concepts for reusing and recycling these blades. The project begins within an innovative joint design studio, staged between Queen’s University Belfast and the Georgia Institute of Technology, where architecture students will, within the highly-constrained contexts of the blade properties and the potential reuse sites, systematically generate, filter, and prototype a selection of proposals, reusing the decommissioned wind turbine blades in buildings, infrastructure, landscape, and public art. The paper analyzes the potential and challenges of considering this highly constrained and yet multidisciplinary problem within the context of a Masters level Architecture studio. The paper concludes with an analysis of how outcome-driven design problems challenge traditional design studio cultures, acknowledging the need to make processes and ideas more explicit in order to categorise, analyse, rank and refine proposed architectural solutions. 
    more » « less
  5. The focus of this work is on the problem of the future waste to be generated by the decom-missioning of wind farms and especially the Fiber Reinforced Polymer (FRP) composite materials used in the wind turbine blades. The FRP composites used to manufacture the blades are not biodegradable and present severe problems with regard to waste management and their End-of-Life (EOL). The impact on polymers on the environment and society has become a major concern in many countries. With the increased awareness of the environmental impacts of climate change, decreased and more expensive natural resources, and greater global concerns for health, the barriers to FRP production and waste disposal are likely to increase. In the context of the circular economy the preferred method to manage FRP waste is to use it in new applications or processes. Recent structural analysis research conducted by the authors related to reuse of FRP composite material parts from decommissioned wind turbine blades in infrastructure applications is presented in this paper. 
    more » « less