skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 15, 2026

Title: A model-constrained discontinuous Galerkin Network (DGNet) for compressible Euler equations with out-of-distribution generalization
Real-time accurate solutions of large-scale complex dynamical systems are critically needed for control, optimization, uncertainty quantification, and decision-making in practical engineering and science applications, particularly in digital twin contexts. Recent research on hybrid approaches combining numerical methods and machine learning in end-to-end training has shown significant improvements over either approach alone. However, using neural networks as surrogate models generally exhibits limitations in generalizability over different settings and in capturing the evolution of solution discontinuities. In this work, we develop a model-constrained discontinuous Galerkin Network DGNet approach, a significant extension to our previous work, for compressible Euler equations with out-of-distribution generalization. The core of DGNet is the synergy of several key strategies: (i) leveraging time integration schemes to capture temporal correlation and taking advantage of neural network speed for computation time reduction. This is the key to the temporal discretization-invariant property of DGNet; (ii) employing a model-constrained approach to ensure the learned tangent slope satisfies governing equations; (iii) utilizing a DG-inspired architecture for GNN where edges represent Riemann solver surrogate models and nodes represent volume integration correction surrogate models, enabling capturing discontinuity capability, aliasing error reduction, and mesh discretization generalizability. Such a design allows DGNet to learn the DG spatial discretization accurately; (iv) developing an input normalization strategy that allows surrogate models to generalize across different initial conditions, geometries, meshes, boundary conditions, and solution orders. In fact, the normalization is the key to spatial discretization-invariance for DGNet; and (v) incorporating a data randomization technique that not only implicitly promotes agreement between surrogate models and true numerical models up to second-order derivatives, ensuring long-term stability and prediction capacity, but also serves as a data generation engine during training, leading to enhanced generalization on unseen data. To validate the theoretical results, effectiveness, stability, and generalizability of our novel DGNet approach, we present comprehensive numerical results for 1D and 2D compressible Euler equation problems, including Sod Shock Tube, Lax Shock Tube, Isentropic Vortex, Forward Facing Step, Scramjet, Airfoil, Euler Benchmarks, Double Mach Reflection, and a Hypersonic Sphere Cone benchmark.  more » « less
Award ID(s):
1845799 2212442 2108320
PAR ID:
10584599
Author(s) / Creator(s):
; ;
Publisher / Repository:
CAMWA
Date Published:
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Volume:
440
Issue:
C
ISSN:
0045-7825
Page Range / eLocation ID:
117912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We are concerned with free boundary problems arising from the analysis of multidimensional transonic shock waves for the Euler equations in compressible fluid dynamics. In this expository paper, we survey some recent developments in the analysis of multidimensional transonic shock waves and corresponding free boundary problems for the compressible Euler equations and related nonlinear partial differential equations (PDEs) of mixed type. The nonlinear PDEs under our analysis include the steady Euler equations for potential flow, the steady full Euler equations, the unsteady Euler equations for potential flow, and related nonlinear PDEs of mixed elliptic–hyperbolic type. The transonic shock problems include the problem of steady transonic flow past solid wedges, the von Neumann problem for shock reflection–diffraction, and the Prandtl–Meyer problem for unsteady supersonic flow onto solid wedges. We first show how these longstanding multidimensional transonic shock problems can be formulated as free boundary problems for the compressible Euler equations and related nonlinear PDEs of mixed type. Then we present an effective nonlinear method and related ideas and techniques to solve these free boundary problems. The method, ideas, and techniques should be useful to analyze other longstanding and newly emerging free boundary problems for nonlinear PDEs. 
    more » « less
  2. The toolkit for high-order neutrino-radiation hydrodynamics (thornado) is being developed for simulations of core-collapse supernovae (CCSNe) and related problems. Current capabilities in thornado include solvers for the Euler equations — in non-relativistic and special relativistic limits — and the two-moment model of neutrino transport. The spatial discretization in thornado is based on the discontinuous Galerkin (DG) method, which is receiving increased attention from the computational astrophysics community. In this paper, we provide an overview of the numerical methods for the Euler equations in thornado, and present some encouraging preliminary numerical results from a set of basic tests in one and two spatial dimensions. 
    more » « less
  3. ABSTRACT This paper presents high-order Runge–Kutta (RK) discontinuous Galerkin methods for the Euler–Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components that are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane–Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples – including a toy model of stellar core collapse with a phenomenological equation of state that results in core bounce and shock formation – are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock-capturing capability, and total energy conservation. 
    more » « less
  4. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less
  5. In this paper, we consider Maxwell’s equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. This work is a continuation of our previous research on energy-stable numerical schemes for nonlinear dispersive optical media [6,7]. The results for the numerical dispersion analysis of the reduced linear model, considered in the present paper, can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwell’s equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measures 
    more » « less