Standard approximations for the exchange–correlation functional in Kohn–Sham density functional theory (KS-DFT) typically lead to unacceptably large errors when applied to strongly correlated electronic systems. Partition-DFT (PDFT) is a formally exact reformulation of KS-DFT in which the ground-state density and energy of a system are obtained through self-consistent calculations on isolated fragments, with a partition energy representing inter-fragment interactions. Here, we show how typical errors of the local density approximation (LDA) in KS-DFT can be largely suppressed through a simple approximation, the multi-fragment overlap approximation (MFOA), for the partition energy in PDFT. Our method is illustrated on simple models of one-dimensional strongly correlated linear hydrogen chains. The MFOA, when used in combination with the LDA for the fragments, improves LDA dissociation curves of hydrogen chains and produces results that are comparable to those of spin-unrestricted LDA, but without breaking the spin symmetry. MFOA also induces a correction to the LDA electron density that partially captures the correct density dimerization in strongly correlated hydrogen chains. Moreover, with an additional correction to the partition energy that is specific to the one-dimensional LDA, the approximation is shown to produce dissociation energies in quantitative agreement with calculations based on the density matrix renormalization group method.
more »
« less
This content will become publicly available on January 27, 2026
A stability inequality for planar lens partition
Recently it has been shown that the unique local perimeter minimizing partitioning of the plane into three regions, where one region has finite area and the other two have infinite measure, is given by the so-called standard lens partition. Here we prove a sharp stability inequality for the standard lens, hence strengthening the local minimality of the lens partition in a quantitative form. As an application of this stability result we consider a nonlocal perturbation of an isoperimetric problem.
more »
« less
- Award ID(s):
- 2306962
- PAR ID:
- 10584653
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- ISSN:
- 0308-2105
- Page Range / eLocation ID:
- 1 to 34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
When Partition Crossover is used to recombine two parents which are local optima, the ospring are all local optima in the smallest hyperplane subspace that contains the two parents. The ospring can also be organized into a non-planar hypercube "lattice." Fur- thermore, all of the ospring can be evaluated using a simple linear equation. When a child of Partition Crossover is a local optimum in the full search space, the linear equation exactly determines its evaluation. When a child of Partition Crossover can be improved by local search, the linear equation is an upper bound on the evaluation of the associated local optimum when minimizing. This theoret- ical result holds for all k-bounded Pseudo-Boolean optimization problems, including MAX-kSAT, QUBO problems, as well as ran- dom and adjacent NK landscapes. These linear equations provide a stronger explanation as to why the "Big Valley" distribution of local optima exists.more » « less
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)An eight-partition of a finite set of points (respectively, of a continuous mass distribution) in ℝ³ consists of three planes that divide the space into 8 octants, such that each open octant contains at most 1/8 of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in ℝ³ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in ℝ³ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of n points in ℝ³ (with prescribed normal direction of one of the planes) in time O^*(n^{5/2}).more » « less
-
A bstract The entropy of a de Sitter horizon was derived long ago by Gibbons and Hawking via a gravitational partition function. Since there is no boundary at which to define the temperature or energy of the ensemble, the statistical foundation of their approach has remained obscure. To place the statistical ensemble on a firm footing we introduce an artificial “York boundary”, with either canonical or microcanonical boundary conditions, as has been done previously for black hole ensembles. The partition function and the density of states are expressed as integrals over paths in the constrained, spherically reduced phase space of pure 3+1 dimensional gravity with a positive cosmological constant. Issues related to the domain and contour of integration are analyzed, and the adopted choices for those are justified as far as possible. The canonical ensemble includes a patch of spacetime without horizon, as well as configurations containing a black hole or a cosmological horizon. We study thermodynamic phases and (in)stability, and discuss an evolving reservoir model that can stabilize the cosmological horizon in the canonical ensemble. Finally, we explain how the Gibbons-Hawking partition function on the 4-sphere can be derived as a limit of well-defined thermodynamic ensembles and, from this viewpoint, why it computes the dimension of the Hilbert space of states within a cosmological horizon.more » « less
-
We present three new semi-Lagrangian methods based on radial basis function (RBF) interpolation for numerically simulating transport on a sphere. The methods are mesh-free and are formulated entirely in Cartesian coordinates, thus avoiding any irregular clustering of nodes at artificial boundaries on the sphere and naturally bypassing any apparent artificial singularities associated with surface-based coordinate systems. For problems involving tracer transport in a given velocity field, the semi-Lagrangian framework allows these new methods to avoid the use of any stabilization terms (such as hyperviscosity) during time-integration, thus reducing the number of parameters that have to be tuned. The three new methods are based on interpolation using 1) global RBFs, 2) local RBF stencils, and 3) RBF partition of unity. For the latter two of these methods, we find that it is crucial to include some low degree spherical harmonics in the interpolants. Standard test cases consisting of solid body rotation and deformational flow are used to compare and contrast the methods in terms of their accuracy, efficiency, conservation properties, and dissipation/dispersion errors. For global RBFs, spectral spatial convergence is observed for smooth solutions on quasi-uniform nodes, while high-order accuracy is observed for the local RBF stencil and partition of unity approaches.more » « less
An official website of the United States government
