Abstract The enormous increase in mid-IR sensitivity and spatial and spectral resolution provided by the JWST spectrographs enables, for the first time, detailed extragalactic studies of molecular vibrational bands. This opens an entirely new window for the study of the molecular interstellar medium in luminous infrared galaxies (LIRGs). We present a detailed analysis of rovibrational bands of gas-phase CO, H2O, C2H2, and HCN toward the heavily obscured eastern nucleus of the LIRG VV 114, as observed by NIRSpec and the medium resolution spectrograph on the Mid-InfraRed Instrument (MIRI MRS). Spectra extracted from apertures of 130 pc in radius show a clear dichotomy between the obscured active galactic nucleus (AGN) and two intense starburst regions. We detect the 2.3μm CO bandheads, characteristic of cool stellar atmospheres, in the star-forming regions, but not toward the AGN. Surprisingly, at 4.7μm, we find highly excited CO (Tex≈ 700–800 K out to at least rotational levelJ= 27) toward the star-forming regions, but only cooler gas (Tex≈ 200 K) toward the AGN. We conclude that only mid-infrared pumping through the rovibrational lines can account for the equilibrium conditions found for CO and H2O in the deeply embedded starbursts. Here, the CO bands probe regions with an intense local radiation field inside dusty young massive star clusters or near the most massive young stars. The lack of high-excitation molecular gas toward the AGN is attributed to geometric dilution of the intense radiation from the bright point source. An overview of the relevant excitation and radiative transfer physics is provided in an appendix.
more »
« less
High-contrast JWST-MIRI Spectroscopy of Planet-forming Disks for the JDISC Survey
Abstract The JWST Disk Infrared Spectral Chemistry Survey (JDISCS) aims to understand the evolution of the chemistry of inner protoplanetary disks using the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST). With a growing sample of >30 disks, the survey implements a custom method to calibrate the MIRI Medium Resolution Spectrometer (MRS) to contrasts of better than 1:300 across its 4.9–28μm spectral range. This is achieved using observations of Themis family asteroids as precise empirical reference sources. The high spectral contrast enables precise retrievals of physical parameters, searches for rare molecular species and isotopologues, and constraints on the inventories of carbon- and nitrogen-bearing species. JDISCS also offers significant improvements to the MRS wavelength and resolving power calibration. We describe the JDISCS calibrated data and demonstrate their quality using observations of the disk around the solar-mass young star FZ Tau. The FZ Tau MIRI spectrum is dominated by strong emission from warm water vapor. We show that the water and CO line emission originates from the disk surface and traces a range of gas temperatures of ∼500–1500 K. We retrieve parameters for the observed CO and H2O lines and show that they are consistent with a radial distribution represented by two temperature components. A high water abundance ofn(H2O) ∼ 10−4fills the disk surface at least out to the 350 K isotherm at 1.5 au. We search the FZ Tau environs for extended emission, detecting a large (radius of ∼300 au) ring of emission from H2gas surrounding FZ Tau, and discuss its origin.
more »
« less
- Award ID(s):
- 1950797
- PAR ID:
- 10584758
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- The Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 963
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 158
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces.more » « less
-
Abstract An understanding of abundance and distribution of water vapor in the innermost region of protoplanetary disks is key to understanding the origin of habitable worlds and planetary systems. Past observations have shown H 2 O to be abundant and a major carrier of elemental oxygen in disk surface layers that lie within the inner few astronomical units of the disk. The combination of high abundance and strong radiative transitions leads to emission lines that are optically thick across the infrared spectral range. Its rarer isotopologue H 2 18 O traces deeper into this layer and will trace the full content of the planet-forming zone. In this work, we explore the relative distribution of H 2 16 O and H 2 18 O within a model that includes water self-shielding from the destructive effects of ultraviolet radiation. In this Letter we show that there is an enhancement in the relative H 2 18 O abundance high up in the warm molecular layer within 0.1–10 au due to self-shielding of CO, C 18 O, and H 2 O. Most transitions of H 2 18 O that can be observed with JWST will partially emit from this layer, making it essential to take into account how H 2 O self-shielding may effect the H 2 O to H 2 18 O ratio. Additionally, this reservoir of H 2 18 O -enriched gas in combination with the vertical “cold finger” effect might provide a natural mechanism to account for oxygen isotopic anomalies found in meteoritic material in the solar system.more » « less
-
Abstract H2CO is a small organic molecule widely detected in protoplanetary disks. As a precursor to grain-surface formation of CH3OH, H2CO is considered an important precursor of O-bearing organic molecules that are locked in ices. Still, since gas-phase reactions can also form H2CO, there remains an open question on the channels by which organics form in disks, and how much the grain versus the gas pathways impact the overall organic reservoir. We present spectrally and spatially resolved Atacama Large Millimeter/submillimeter Array observations of several ortho- and para-H2CO transitions toward the bright protoplanetary disk around the Herbig Ae star HD 163296. We derive column density, excitation temperature, and ortho-to-para ratio (OPR) radial profiles for H2CO, as well as disk-averaged values ofNT∼ 4 × 1012cm−2,Tex∼ 20 K, and OPR ∼ 2.7, respectively. We empirically determine the vertical structure of the emission, finding vertical heights ofz/r∼ 0.1. From the profiles, we find a relatively constant OPR ∼ 2.7 with radius, but still consistent with 3.0 among the uncertainties, a secondary increase ofNTin the outer disk, and lowTexvalues that decrease with disk radius. Our resulting radial, vertical, and OPR constraints suggest an increased UV penetration beyond the dust millimeter edge, consistent with an icy origin but also with cold gas-phase chemistry. This Herbig disk contrasts previous results for the T Tauri disk, TW Hya, which had a larger contribution from cold gas-phase chemistry. More observations of other sources are needed to disentangle the dominant formation pathway of H2CO in protoplanetary disks.more » « less
-
Abstract Carbon dioxide is an important tracer of the chemistry and physics in the terrestrial planet-forming zone. Using a thermochemical model that has been tested against the mid-infrared water emission, we reinterpret the CO2emission as observed with Spitzer. We find that both water UV-shielding and extra chemical heating significantly reduce the total CO2column in the emitting layer. Water UV-shielding is the more efficient effect, reducing the CO2column by ∼2 orders of magnitude. These lower CO2abundances lead to CO2-to-H2O flux ratios that are closer to the observed values, but CO2emission is still too bright, especially in relative terms. Invoking the depletion of elemental oxygen outside of the water midplane ice line more strongly impacts the CO2emission than it does the H2O emission, bringing the CO2-to-H2O emission in line with the observed values. We conclude that the CO2emission observed with Spitzer-IRS is coming from a thin layer in the photosphere of the disk, similar to the strong water lines. Below this layer, we expect CO2not to be present except when replenished by a physical process. This would be visible in the13CO2spectrum as well as certain12CO2features that can be observed by JWST-MIRI.more » « less