Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a AgxPd1−x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2 −D2 exchange kinetics were measured at atmospheric pressure on AgxPd1−x catalysts over a temperature range of 333−593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from −6.2 eV for pure Ag to −3.4 eV for pure Pd. At all reaction conditions, the H2 −D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with xPd < 0.58. Measured H2 −D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H′) mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔEads ‡ , associative desorption, ΔEdes ‡ , and the surface-to-subsurface diffusion energy, ΔEss, as a function of alloy composition, xPd. The 2H′ mechanism predicts ΔEads ‡ = 0−10 kJ/mol, ΔEdes ‡ = 30−65 kJ/mol, and ΔEss = 20−30 kJ/mol for all alloy compositions with xPd ≥ 0.64, including for the pure Pd catalyst (i.e., xPd = 1). For these Pd-rich catalysts, ΔEdes ‡ and ΔEss appeared to increase by ∼5 kJ/mol with decreasing xPd. However, due to the coupling of kinetic parameters in the 2H′ mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when xPd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2 −D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing xPd can be explained by a reduction in the availability of surface Pd at high Ag compositions.
more »
« less
A revised model for activity–composition relations in solid and molten FePt alloys and a preliminary model for characterization of oxygen fugacity in high-pressure experiments
Abstract. We present new models for the activity of iron (γFe) in solid face-centered cubic (fcc) and liquid FePt alloy at high temperature and pressure to facilitate their use as sliding buffer redox sensors under extreme conditions. Numerous experimental studies of γFe in FePt alloy at 100 kPa have produced a wide spread of values. By favoring high-temperature studies that are more likely to have produced equilibrium measurement and excluding experiments for compositions and temperatures that probably encountered ordered or unmixed low-temperature phases, we regress an asymmetric Margules activity–composition model with parameters WFePtfcc=-121.5±2.1 kJ mol−1 and WPtFefcc=-93.3±4.3 kJ mol−1. These values are close to the widely used model of Kessel et al. (2001), but for Pt-rich compositions they predict larger Fe activities and correspondingly more reduced oxygen fugacities. Activity–composition relations in liquid FePt are calibrated from direct measurements of activities and, most sensitively, from the trace of the Fe–Pt liquidus. Together, these yield asymmetric Margules parameters of WFePtliq=-124.5 kJ mol−1 and WPtFeliq=-94.0 kJ mol−1. The effects of pressure on both fcc and liquid FePt alloy are considered from excess-volume relations. Both solid and liquid alloy display significant positive excess volumes of mixing. Extraction of the excess volume of mixing for fcc FePt alloy requires filtering data for ordered low-temperature phases and corrections for the effects of magnetostriction on Fe-rich compositions which exhibit “Invar” behavior. Applied at high temperatures and pressures, both solid and liquid FePt alloys have strongly negative deviations from ideality at low pressure, which become closer to ideal at high pressure. These models provide a provisional basis for the calculation of aFe in high-temperature, high-pressure experiments that, when combined with estimates of aFeO, allow characterization of fO2 under conditions relevant to magma oceans, core formation, and differentiation processes in the lower mantle of Earth or on other terrestrial planets. Improvements in these models require new constraints on the equation of state of FePt fcc alloy and documentation of the high-pressure melting relations in the system Fe–Pt.
more »
« less
- PAR ID:
- 10584916
- Publisher / Repository:
- Copernicus
- Date Published:
- Journal Name:
- European Journal of Mineralogy
- Volume:
- 35
- Issue:
- 5
- ISSN:
- 1617-4011
- Page Range / eLocation ID:
- 789 to 803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Both CALPHAD (CALculation of PHAse Diagrams) and machine-learning (ML) approaches were employed to analyze the phase formation in 2,436 experimentally measured high entropy alloy (HEA) compositions consisting of various quinary mixtures of Al, Co, Cr, Cu, Fe, Mn, and Ni. CALPHAD was found to have good capabilities in predicting the BCC/B2 and FCC phase formation for the 1,761 solid-solution-only compositions, excluding HEAs containing an amorphous phase (AM) or/and intermetallic compound (IM). Phase selection rules were examined systematically using several parameters and it revealed that valency electron concentration (VEC) < 6.87 and VEC > 9.16 are the conditions for the formation of single-phase BCC/B2 and FCC, respectively; and CALPHAD could predict this with essentially 100% accuracy. Both CALPHAD predictions and experimental observations show that more BCC/B2 alloys are formed over FCC alloys as the atomic size difference between the elements increases. Four machine learning (ML) algorithms, decision tree (DT), k-nearest neighbor (KNN), support vector machine (SVM), and artificial neural network (ANN), were employed to study the phase selection rules for two different datasets, one consisting of 1,761 solid-solution (SS) HEAs without AM and/or IM phases, and the other set consisting of all the 2,436 HEA compositions. Cross validation (CV) was performed to optimize the ML models and the CV accuracies are found to be 91.4%, 93.1%, 90.2%, 89.1% for DT, KNN, SVM, and ANN respectively in predicting the formation of BCC/B2, BCC/B2 + FCC, and FCC; and 93.6%, 93.3%, 95.5%, 92.7% for DT, KNN, SVM, and ANN respectively in predicting SS, AM, SS + AM, and IM phases. Sixty-six experimental bulk alloys with SS structures are predicted with trained ANN model, and the accuracy reaches 81.8%. VEC is found to be most important parameter in phase prediction for BCC/B2, BCC/B2 + FCC, and FCC phases. Electronegativity difference and FCC-BCC-index (FBI) are the two additional dominating features in determining the formation of SS, AM, SS + AM, and IM. A separation line ΔH_mix=28.97×VEC-246.77 was found in the VEC-vs-ΔH_mix plot to predict the formation of single-phase BCC/B2 or FCC with a 96.2% accuracy (ΔH_mix = mixing enthalpy). These insights will be very valuable for designing HEAs with targeted crystal structures.more » « less
-
In this work, the performance of the carbon doped compositionally complex alloy (CCA) MoNbTaW was studied under ambient and high pressure and high temperature conditions. TaC and NbC carbides were formed when a large concentration of carbon was introduced while synthesizing the MoNbTaW alloy. Both FCC carbides and BCC CCA phases were detected in the sample compound at room temperature, in which the BCC phase was believed to have only refractory elements MoNbTaW while FCC carbide came from TaC and NbC. Carbides in the carbon doped MoNbTaW alloy were very stable since no phase transition was obtained even under 3.1 GPa and 870 °C by employing the resistor-heating diamond anvil cell (DAC) synchrotron X-ray diffraction technique. Via in situ examination, this study confirms the stability of carbides and MoNbTaW in the carbon doped CCA even under high pressure and high temperature.more » « less
-
Both seismic observations of dense low shear velocity regions and models of magma ocean crystallization and mantle dynamics support enrichment of iron in Earth’s lowermost mantle. Physical properties of iron-rich lower mantle heterogeneities in the modern Earth depend on distribution of iron between coexisting lower mantle phases (Mg,Fe)O magnesiowüstite, (Mg,Fe)SiO3 bridgmanite, and (Mg,Fe)SiO3 post-perovskite. The partitioning of iron between these phases was investigated in synthetic ferrous-iron-rich olivine compositions (Mg0.55Fe0.45)2SiO4 and (Mg0.28Fe0.72)2SiO4 at lower mantle conditions ranging from 33–128 GPa and 1900–3000 K in the laser-heated diamond anvil cell. The resulting phase assemblages were characterized by a combination of in situ X-ray diffraction and ex situ transmission electron microscopy. The exchange coefficient between bridgmanite and magnesiowüstite decreases with pressure and bulk Fe# and increases with temperature. Thermodynamic modeling determines that incorporation and partitioning of iron in bridgmanite are explained well by excess volume associated with Mg-Fe exchange. Partitioning results are used to model compositions and densities of mantle phase assemblages as a function of pressure, FeO-content and SiO2-content. Unlike average mantle compositions, iron-rich compositions in the mantle exhibit negative dependence of density on SiO2-content at all mantle depths, an important finding for interpretation of deep lower mantle structures.more » « less
-
null (Ed.)One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs. RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions.more » « less
An official website of the United States government

