We demonstrate a host-guest molecular recognition approach to advance double electron-electron resonance (DEER) distance measurements of spin-labeled proteins. We synthesized an iodoacetamide (IA) derivative of 2,6-diazaadamantane nitroxide (DZD) spin label that could be doubly incorporated into T4 Lysozyme (T4L) by site-directed spin labeling (SDSL) with efficiency up to 50% per cysteine. The rigidity of the fused ring structure and absence of mobile methyl groups increase the spin echo dephasing time (Tm) at temperatures above 80 K. This enables DEER measurements of distances >4 nm in DZD labeled-T4L in glycerol/water at temperatures up to 150 K, with increased sensitivity compared to common spin label such as MTSL. Addition of β-cyclodextrin (β-CD) reduces the rotational correlation time of the label, slightly increases Tm, and most importantly, narrows (and slightly lengthens) the inter-spin distance distributions. The distance distributions are in good agreement with simulated distance distributions obtained by rotamer libraries. These results provide a foundation for developing supramolecular recognition to facilitate long-distance DEER measurements at near physiological temperatures.
more »
« less
The contribution of methyl groups to electron spin decoherence of nitroxides in glassy matrices
Long electron spin coherence lifetimes are crucial for high sensitivity and resolution in many pulse electron paramagnetic resonance (EPR) experiments aimed at measuring hyperfine and dipolar couplings, as well as in potential quantum sensing applications of molecular spin qubits. In immobilized systems, methyl groups contribute significantly to electron spin decoherence as a result of methyl torsional quantum tunneling. We examine the electron spin decoherence dynamics of the nitroxide radical 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) in both a methyl-free solvent and a methyl-containing solvent at cryogenic temperature. We model nitroxide and solvent methyl effects on decoherence using cluster correlation expansion (CCE) simulations extended to include methyl tunneling and compare the calculations to experimental data. We show that by using the methyl tunneling frequency as a fit parameter, experimental Hahn echo decays can be reproduced fairly well, allowing structural properties to be investigated in silico. In addition, we examine the Hahn echo of a hypothetical system with an unpaired electron and a single methyl to determine the effect of geometric configuration on methyl-driven electron spin decoherence. The simulations show that a methyl group contributes the most to electron spin decoherence if it is located between 2.5 and 6–7 Å from the electron spin, with its orientation being of secondary importance.
more »
« less
- Award ID(s):
- 2154302
- PAR ID:
- 10585013
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 17
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Double electron–electron resonance (DEER) spectroscopy measures the distribution of distances between two electron spins in the nanometer range, often on doubly spin-labeled proteins, via the modulation of a refocused spin echo by the dipolar interaction between the spins. DEER is commonly conducted under conditions where the polarization of the spins is small. Here, we examine the DEER signal under conditions of high spin polarization, thermally obtainable at low temperatures and high magnetic fields, and show that the signal acquires a polarization-dependent out-of-phase component both for the intramolecular and intermolecular contributions. For the latter, this corresponds to a phase shift of the spin echo that is linear in the pump pulse position. We derive a compact analytical form of this phase shift and show experimental measurements using monoradical and biradical nitroxides at several fields and temperatures. The effect highlights a novel aspect of the fundamental spin physics underlying DEER spectroscopy.more » « less
-
Establishing the fundamental chemical principles that govern molecular electronic quantum decoherence has remained an outstanding challenge. Fundamental questions such as how solvent and intramolecular vibrations or chemical functionalization contribute to the decoherence remain unanswered and are beyond the reach of state-of-the-art theoretical and experimental approaches. Here we address this challenge by developing a strategy to isolate electronic decoherence pathways for molecular chromophores immersed in condensed phase environments that enables elucidating how electronic quantum coherence is lost. For this, we first identify resonance Raman spectroscopy as a general experimental method to reconstruct molecular spectral densities with full chemical complexity at room temperature, in solvent, and for fluorescent and non-fluorescent molecules. We then show how to quantitatively capture the decoherence dynamics from the spectral density and identify decoherence pathways by decomposing the overall coherence loss into contributions due to individual molecular vibrations and solvent modes. We illustrate the utility of the strategy by analyzing the electronic decoherence pathways of the DNA base thymine in water. Its electronic coherences decay in 30 fs. The early-time decoherence is determined by intramolecular vibrations while the overall decay by solvent. Chemical substitution of thymine modulates the decoherence with hydrogen-bond interactions of the thymine ring with water leading to the fastest decoherence. Increasing temperature leads to faster decoherence as it enhances the importance of solvent contributions but leaves the early-time decoherence dynamics intact. The developed strategy opens key opportunities to establish the connection between molecular structure and quantum decoherence as needed to develop chemical strategies to rationally modulate it.more » « less
-
Under certain conditions, a fermion in a superconductor can separate in space into two parts known as Majorana zero modes which are immune to decoherence from local noise sources and are attractive building blocks for quantum computers. Promising experimental progress has been made to demonstrate Majorana zero modes in materials with strong spin–orbit coupling proximity coupled to superconductors. Here we report signatures of Majorana zero modes in a material platform utilizing the surface states of gold. Using scanning tunneling microscope to probe EuS islands grown on top of gold nanowires, we observe two well-separated zero-bias tunneling conductance peaks aligned along the direction of the applied magnetic field, as expected for a pair of Majorana zero modes. This platform has the advantage of having a robust energy scale and the possibility of realizing complex designs using lithographic methods.more » « less
-
Under certain conditions, a fermion in a superconductor can separate in space into two parts known as Majorana zero modes, which are immune to decoherence from local noise sources and are attractive building blocks for quantum computers. Promising experimental progress has been made to demonstrate Majorana zero modes in materials with strong spin–orbit coupling proximity coupled to superconductors. Here we report signatures of Majorana zero modes in a material platform utilizing the surface states of gold. Using scanning tunneling microscope to probe EuS islands grown on top of gold nanowires, we observe two well-separated zero-bias tunneling conductance peaks aligned along the direction of the applied magnetic field, as expected for a pair of Majorana zero modes. This platform has the advantage of having a robust energy scale and the possibility of realizing complex designs using lithographic methods.more » « less
An official website of the United States government

