In a recent publication we studied the decay rate of primordial black holes perceiving the dark dimension, an innovative five-dimensional (5D) scenario that has a compact space with characteristic length scale in the micron range. We demonstrated that the rate of Hawking radiation of 5D black holes slows down compared to 4D black holes of the same mass. Armed with our findings we showed that for a species scale of , an all-dark-matter interpretation in terms of primordial black holes should be feasible for black hole masses in the range . As a natural outgrowth of our recent study, herein we calculate the Hawking evaporation of near-extremal 5D black holes. Using generic entropy arguments we demonstrate that Hawking evaporation of higher-dimensional near-extremal black holes proceeds at a slower rate than the corresponding Schwarzschild black holes of the same mass. Assisted by this result we show that if there were 5D primordial near-extremal black holes in nature, then a primordial black hole all-dark-matter interpretation would be possible in the mass range , where is a parameter that controls the difference between mass and charge of the associated near-extremal black hole. Published by the American Physical Society2024 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Mass and force relations for extremal Einstein-Maxwell-dilaton-axion black holes
                        
                    
    
            We investigate various properties of extremal dyonic static black holes in Einstein-Maxwell-Dilaton-Axion theory. We obtain a simple first-order ordinary differential equation for the black hole mass in terms of its electric and magnetic charges, which we can solve explicitly for certain special values of the scalar couplings. For one such case we also construct new dyonic black hole solutions, making use of the presence of an enhanced symmetry. Finally, we investigate the structure of long range forces and binding energies between nonequivalent extremal black holes. For certain special cases, we can identify regions of parameter space where the force is always attractive or repulsive. Unlike in the case without an axion, the force and binding energies between distinct black holes are not always correlated with each other. Our work is motivated in part by the question of whether long range forces between nonidentical states can potentially encode information about UV constraints on low-energy physics. Published by the American Physical Society2025 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2210271
- PAR ID:
- 10585041
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 6
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We derive the explicit embedding of the effective Kerr spacetimes, which are pertinent to the vanishing of static Love numbers, soft hair descriptions of Kerr black holes, and low-frequency scalar-Kerr scattering amplitudes, as solutions within supergravity. These spacetimes exhibit a hidden or symmetry resembling the so called subtracted geometries with symmetry, which accurately represent the near-horizon geometry of Kerr black holes and, as we will argue most accurately represents the internal structure of the Kerr black hole. To quantify the differences among the effective Kerr spacetimes, we compare their physical quantities, internal structures, and geodesic equations. Although their thermodynamic properties, including entropy, match those of Kerr, our study uncovers significant differences in the interiors of these effective Kerr solutions. A careful examination of the internal structure of the spacetimes highlights the distinctions between various effective Kerr geometries and their quasinormal spectra. Published by the American Physical Society2025more » « less
- 
            -parity can be extended to a continuous global symmetry. We investigate whether an anomalous can be identified as the Peccei-Quinn symmetry suitable for solving the strong problem within supersymmetric extensions of the Standard Model. In this case, is broken at some intermediate scale and the quantum chromodynamics axion is the -axion. Moreover, the -symmetry can potentially be gauged via the Green-Schwarz mechanism within completions to supergravity, in order to evade the axion quality problem. Obstacles to realizing this scenario are highlighted and phenomenologically viable approaches are identified. Published by the American Physical Society2025more » « less
- 
            Stellar evolution predicts the existence of a mass gap for black hole remnants produced by pair-instability supernova dynamics, whose lower and upper edges are very uncertain. We study the possibility of constraining the location of the upper end of the pair-instability mass gap, which is believed to appear around , using gravitational wave observations of compact binary mergers with next-generation ground-based detectors. While high metallicity may not allow for the formation of first-generation black holes on the “far side” beyond the gap, metal-poor environments containing population III stars could lead to such heavy black hole mergers. We show that, even in the presence of contamination from other merger channels, next-generation detectors will measure the location of the upper end of the mass gap with a relative precision close to at 90% CL, where is the number of detected mergers with both members beyond the gap. These future observations could reduce current uncertainties in nuclear and astrophysical processes controlling the location of the gap. Published by the American Physical Society2024more » « less
- 
            The cores of dense stars are a powerful laboratory for studying feebly coupled particles such as axions. Some of the strongest constraints on axionlike particles and their couplings to ordinary matter derive from considerations of stellar axion emission. In this work we study the radiation of axionlike particles from degenerate neutron star matter via a lepton-flavor-violating coupling that leads to muon-electron conversion when an axion is emitted. We calculate the axion emission rate per unit volume (emissivity) and by comparing with the rate of neutrino emission, we infer upper limits on the lepton-flavor-violating coupling that are at the level of . For the hotter environment of a supernova, such as SN 1987A, the axion emission rate is enhanced and the limit is stronger, at the level of , competitive with laboratory limits. Interestingly, our derivation of the axion emissivity reveals that axion emission via the lepton-flavor-violating coupling is suppressed relative to the familiar lepton-flavor-preserving channels by the square of the plasma temperature to muon mass ratio, which is responsible for the relatively weaker limits. Published by the American Physical Society2024more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
