skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dark dimension, the swampland, and the dark matter fraction composed of primordial near-extremal black holes
In a recent publication we studied the decay rate of primordial black holes perceiving the dark dimension, an innovative five-dimensional (5D) scenario that has a compact space with characteristic length scale in the micron range. We demonstrated that the rate of Hawking radiation of 5D black holes slows down compared to 4D black holes of the same mass. Armed with our findings we showed that for a species scale of O ( 10 10 GeV ) , an all-dark-matter interpretation in terms of primordial black holes should be feasible for black hole masses in the range 10 14 M / g 10 21 . As a natural outgrowth of our recent study, herein we calculate the Hawking evaporation of near-extremal 5D black holes. Using generic entropy arguments we demonstrate that Hawking evaporation of higher-dimensional near-extremal black holes proceeds at a slower rate than the corresponding Schwarzschild black holes of the same mass. Assisted by this result we show that if there were 5D primordial near-extremal black holes in nature, then a primordial black hole all-dark-matter interpretation would be possible in the mass range 10 5 β M / g 10 21 , where β is a parameter that controls the difference between mass and charge of the associated near-extremal black hole. Published by the American Physical Society2024  more » « less
Award ID(s):
2112527
PAR ID:
10540390
Author(s) / Creator(s):
; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review D
Volume:
109
Issue:
9
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the last two years, the dark dimension scenario has emerged as focal point of many research interests. In particular, it functions as a stepping stone to address the cosmological hierarchy problem and provides a colosseum for dark matter contenders. We reexamine the possibility that primordial black holes (PBHs) perceiving the dark dimension could constitute all of the dark matter in the Universe. We reassess limits on the abundance of PBHs as dark matter candidates from γ -ray emission resulting from Hawking evaporation. We reevaluate constraints from the diffuse γ -ray emission in the direction of the Galactic Center that offer the best and most solid upper limits on the dark matter fraction composed of PBHs. The revised mass range that allows PBHs to assemble all cosmological dark matter is estimated to be 10 15 M BH / g 10 21 . We demonstrate that, due to the constraints from γ -ray emission, quantum corrections due to the speculative memory burden effect do not modify this mass range. We also investigate the main characteristics of PBHs that are localized in the bulk. We show that PBHs localized in the bulk can make all cosmological dark matter if 10 11 M BH / g 10 21 . Finally, we comment on the black holes that could be produced if one advocates a space with two boundaries for the dark dimension. Published by the American Physical Society2024 
    more » « less
  2. We perform the first search for ultralight dark matter using a magnetically levitated particle. A submillimeter permanent magnet is levitated in a superconducting trap with a measured force sensitivity of 0.2 fN / Hz . We find no evidence of a signal and derive limits on dark matter coupled to the difference between baryon and lepton number, B L , in the mass range ( 1.10360 1.10485 ) × 10 13 eV / c 2 . Our most stringent limit on the coupling strength is g B L 2.98 × 10 21 . We propose the POLONAISE (Probing Oscillations using Levitated Objects for Novel Accelerometry In Searches of Exotic physics) experiment, which features short-, medium-, and long-term upgrades that will give us leading sensitivity in a wide mass range, demonstrating the promise of this novel quantum sensing technology in the hunt for dark matter. Published by the American Physical Society2025 
    more » « less
  3. Higgsinos with masses near the electroweak scale can solve the hierarchy problem and provide a dark matter candidate, while detecting them at the LHC remains challenging if their mass splitting is O ( 1 GeV ) . This Letter presents a novel search for nearly mass-degenerate Higgsinos in events with an energetic jet, missing transverse momentum, and a low-momentum track with a significant transverse impact parameter using 140 fb 1 of proton-proton collision data at s = 13 TeV collected by the ATLAS experiment. For the first time since LEP, a range of mass splittings between the lightest charged and neutral Higgsinos from 0.3 to 0.9 GeV is excluded at 95% confidence level, with a maximum reach of approximately 170 GeV in the Higgsino mass. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  4. The inclusive production of the charm-strange baryon Ω c 0 is measured for the first time via its semileptonic decay into Ω e + ν e at midrapidity ( | y | < 0.8 ) in proton-proton (pp) collisions at the center-of-mass energy s = 13 TeV with the ALICE detector at the LHC. The transverse momentum ( p T ) differential cross section multiplied by the branching ratio is presented in the interval 2 < p T < 12 GeV / c . The branching-fraction ratio BR ( Ω c 0 Ω e + ν e ) / BR ( Ω c 0 Ω π + ) is measured to be 1.12 ± 0.22 (stat) ± 0.27 (syst). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented. © 2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  5. Dark matter particles could be superheavy, provided their lifetime is much longer than the age of the Universe. Using the sensitivity of the Pierre Auger Observatory to ultrahigh energy neutrinos and photons, we constrain a specific extension of the Standard Model of particle physics that meets the lifetime requirement for a superheavy particle by coupling it to a sector of ultralight sterile neutrinos. Our results show that, for a typical dark coupling constant of 0.1, the mixing angle θ m between active and sterile neutrinos must satisfy, roughly, θ m 1.5 × 10 6 ( M X / 10 9 GeV ) 2 for a mass M X of the dark-matter particle between 10 8 GeV and 10 11 GeV . Published by the American Physical Society2024 
    more » « less