skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 3, 2026

Title: Design and Evaluation of a Power Wheelchair-based Self-tracking System to Prevent Pressure Ulcers
Self-tracking technologies empower people to build self-knowledge and insights across many domains and individual user contexts. However, individuals with severe motor disabilities are largely excluded from personal informatics systems. To bridge this gap, we designed and developed a first-of-a-kind power wheelchair (PWC) based multi-modal self-tracking system to support individuals with a recent spinal cord injury to track their pressure reliefs---a very frequent self-care activity to prevent pressure ulcers. We deployed this system with nine inpatient participants of a rehabilitation hospital and qualitatively evaluated the feasibility through their interactions with audio, visual, and haptic reminder modalities through observations and interviews. Our deployment and evaluation demonstrate the feasibility of creating chairable self-tracking systems to help facilitate independence and self-awareness of their self-care activity and the potential for personal informatics systems to be effectively designed so that they are useful for this population.  more » « less
Award ID(s):
2146420
PAR ID:
10585070
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM Digital Library
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
9
Issue:
1
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies of personal informatics systems primarily examine people's use or non-use, but people often leverage other technology towards their long-term behavior change processes such as social platforms. We explore how tracking technologies and social platforms together help people build healthy eating behaviors by interviewing 18 people who use Chinese food journaling apps. We contribute a Model of Socially Sustained Self-Tracking in personal informatics, building on the past model of Personal Informatics and the learning components of Social Cognitive Theory. The model illustrates how people get advice from social platforms on when and how to track, transfer data to and apply knowledge from social platforms, evolve to use social platforms after tracking, and occasionally resume using tracking tools. Observational learning and enactive learning are central to these processes, with social technologies helping people to gain deeper and more reliable domain knowledge. We discuss how lapsing and abandoning of tracking can be viewed as evolving to social platforms, offering recommendations for how technology can better facilitate this evolution. 
    more » « less
  2. Background: Personal health technologies, including wearable tracking devices and mobile apps, have great potential to equip the general population with the ability to monitor and manage their health. However, being designed for sighted people, much of their functionality is largely inaccessible to the blind and low-vision (BLV) population, threatening the equitable access to personal health data (PHD) and health care services. Objective: This study aims to understand why and how BLV people collect and use their PHD and the obstacles they face in doing so. Such knowledge can inform accessibility researchers and technology companies of the unique self-tracking needs and accessibility challenges that BLV people experience. Methods: We conducted a web-based and phone survey with 156 BLV people. We reported on quantitative and qualitative findings regarding their PHD tracking practices, needs, accessibility barriers, and work-arounds. Results: BLV respondents had strong desires and needs to track PHD, and many of them were already tracking their data despite many hurdles. Popular tracking items (ie, exercise, weight, sleep, and food) and the reasons for tracking were similar to those of sighted people. BLV people, however, face many accessibility challenges throughout all phases of self-tracking, from identifying tracking tools to reviewing data. The main barriers our respondents experienced included suboptimal tracking experiences and insufficient benefits against the extended burden for BLV people. Conclusions: We reported the findings that contribute to an in-depth understanding of BLV people’s motivations for PHD tracking, tracking practices, challenges, and work-arounds. Our findings suggest that various accessibility challenges hinder BLV individuals from effectively gaining the benefits of self-tracking technologies. On the basis of the findings, we discussed design opportunities and research areas to focus on making PHD tracking technologies accessible for all, including BLV people. 
    more » « less
  3. null (Ed.)
    Nearly half of people prescribed medication to treat chronic or short-term conditions do not take their medicine as prescribed. This leads to worse treatment outcomes, higher hospital admission rates, increased healthcare costs, and increased morbidity and mortality rates. While some instances of medication non-adherence are a result of problems with the treatment plan or barriers caused by the health care provider, many are instances caused by patient-related factors such as forgetting, running out of medication, and not understanding the required dosages. This presents a clear need for patient-centered systems that can reliably increase medication adherence. To that end, in this work we describe an activity recognition system capable of recognizing when individuals take medication in an unconstrained, real-world environment. Our methodology uses a modified version of the Bagging ensemble method to suit unbalanced data and a classifier trained on the prediction probabilities of the Bagging classifier to identify when individuals took medication during a full-day study. Using this methodology we are able to recognize when individuals took medication with an F-measure of 0.77. Our system is a first step towards developing personal health interfaces that are capable of providing personalized medication adherence interventions. 
    more » « less
  4. Maintaining data quality is a fundamental requirement for any successful and long-term data management. Providing high-quality, reliable, and statistically sound data is a primary goal for clinical research informatics. In addition, effective data governance and management are essential to ensuring accurate data counts, reports, and validation. As a crucial step of the clinical research process, it is important to establish and maintain organization-wide standards for data quality management to ensure consistency across all systems designed primarily for cohort identification, allowing users to perform an enterprise-wide search on a clinical research data repository to determine the existence of a set of patients meeting certain inclusion or exclusion criteria. Some of the clinical research tools are referred to as de-identified data tools. Assessing and improving the quality of data used by clinical research informatics tools are both important and difficult tasks. For an increasing number of users who rely on information as one of their most important assets, enforcing high data quality levels represents a strategic investment to preserve the value of the data. In clinical research informatics, better data quality translates into better research results and better patient care. However, achieving high-quality data standards is a major task because of the variety of ways that errors might be introduced in a system and the difficulty of correcting them systematically. Problems with data quality tend to fall into two categories. The first category is related to inconsistency among data resources such as format, syntax, and semantic inconsistencies. The second category is related to poor ETL and data mapping processes. In this paper, we describe a real-life case study on assessing and improving the data quality at one of healthcare organizations. This paper compares between the results obtained from two de-identified data systems i2b2, and Epic Slicedicer, and discuss the data quality dimensions' specific to the clinical research informatics context, and the possible data quality issues between the de-identified systems. This work in paper aims to propose steps/rules for maintaining the data quality among different systems to help data managers, information systems teams, and informaticists at any health care organization to monitor and sustain data quality as part of their business intelligence, data governance, and data democratization processes. 
    more » « less
  5. Recently, there has been a proliferation of personal health applications describing to use Artificial Intelligence (AI) to assist health consumers in making health decisions based on their data and algorithmic outputs. However, it is still unclear how such descriptions influence individuals' perceptions of such apps and their recommendations. We therefore investigate how current AI descriptions influence individuals' attitudes towards algorithmic recommendations in fertility self-tracking through a simulated study using three versions of a fertility app. We found that participants preferred AI descriptions with explanation, which they perceived as more accurate and trustworthy. Nevertheless, they were unwilling to rely on these apps for high-stakes goals because of the potential consequences of a failure. We then discuss the importance of health goals for AI acceptance, how literacy and assumptions influence perceptions of AI descriptions and explanations, and the limitations of transparency in the context of algorithmic decision-making for personal health. 
    more » « less