skip to main content


Title: An Activity Recognition System for Taking Medicine Using In-The-Wild Data to Promote Medication Adherence
Nearly half of people prescribed medication to treat chronic or short-term conditions do not take their medicine as prescribed. This leads to worse treatment outcomes, higher hospital admission rates, increased healthcare costs, and increased morbidity and mortality rates. While some instances of medication non-adherence are a result of problems with the treatment plan or barriers caused by the health care provider, many are instances caused by patient-related factors such as forgetting, running out of medication, and not understanding the required dosages. This presents a clear need for patient-centered systems that can reliably increase medication adherence. To that end, in this work we describe an activity recognition system capable of recognizing when individuals take medication in an unconstrained, real-world environment. Our methodology uses a modified version of the Bagging ensemble method to suit unbalanced data and a classifier trained on the prediction probabilities of the Bagging classifier to identify when individuals took medication during a full-day study. Using this methodology we are able to recognize when individuals took medication with an F-measure of 0.77. Our system is a first step towards developing personal health interfaces that are capable of providing personalized medication adherence interventions.  more » « less
Award ID(s):
1952236
NSF-PAR ID:
10294629
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IUI '21: 26th International Conference on Intelligent User Interfaces
Page Range / eLocation ID:
575 to 584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we study the optimal design of two-armed clinical trials to maximize the accuracy of parameter estimation in a statistical model, where the interaction between patient covariates and treatment are explicitly incorporated to enable precision medication decisions. Such a modeling extension leads to significant complexities for the produced optimization problems because they include optimization over design and covariates concurrently. We take a min-max optimization model and minimize (over design) the maximum (over population) variance of the estimated interaction effect between treatment and patient covariates. This results in a min-max bilevel mixed integer nonlinear programming problem, which is notably challenging to solve. To address this challenge, we introduce a surrogate optimization model by approximating the objective function, for which we propose two solution approaches. The first approach provides an exact solution based on reformulation and decomposition techniques. In the second approach, we provide a lower bound for the inner optimization problem and solve the outer optimization problem over the lower bound. We test our proposed algorithms with synthetic and real-world data sets and compare them with standard (re)randomization methods. Our numerical analysis suggests that the proposed approaches provide higher-quality solutions in terms of the variance of estimators and probability of correct selection. We also show the value of covariate information in precision medicine clinical trials by comparing our proposed approaches to an alternative optimal design approach that does not consider the interaction terms between covariates and treatment. Summary of Contribution: Precision medicine is the future of healthcare where treatment is prescribed based on each patient information. Designing precision medicine clinical trials, which are the cornerstone of precision medicine, is extremely challenging because sample size is limited and patient information may be multidimensional. This work proposes a novel approach to optimally estimate the treatment effect for each patient type in a two-armed clinical trial by reducing the largest variance of personalized treatment effect. We use several statistical and optimization techniques to produce efficient solution methodologies. Results have the potential to save countless lives by transforming the design and implementation of future clinical trials to ensure the right treatments for the right patients. Doing so will reduce patient risks and reduce costs in the healthcare system. 
    more » « less
  2. Abstract

    Lithium is a drug widely employed for the treatment of bipolar disorder owing to its high efficacy in mood management and suicide prevention. However, this efficacy is often undermined by misdosing and nonadherence, and diligent drug monitoring is required during treatment. Standard lithium monitoring involves invasive blood collections and laboratory analysis with low time granularity. Recent advances in sensor technology have enabled the development of personalized drug‐monitoring devices that analyze biomarker information noninvasively. Herein, based on the fact that the analyte partition onto the fingertip with a high flux, a touch‐based noninvasive monitoring modality for managing lithium pharmacotherapy is devised. The system is built based on a thin organohydrogel‐mounted lithium ion‐selective electrode (TOH‐ISE). The TOH coating provides a stable environment for sensing. Through the utilization of a water/glycerol bi‐solvent matrix, the gel exhibits dehydration‐resist properties, rendering a controlled micro‐environment for ISE conditioning, and subsequently minimizing signal drift. To illustrate the clinical application of the solution, the system is tested on a subject prescribed lithium. The system successfully detected the increase in circulating drug levels following medication intake. Collectively, the results indicate the devised solution is capable to facilitate lithium adherence monitoring and has broader potential for optimizing lithium pharmacotherapy.

     
    more » « less
  3. Background Digital health is poised to transform health care and redefine personalized health. As Internet and mobile phone usage increases, as technology develops new ways to collect data, and as clinical guidelines change, all areas of medicine face new challenges and opportunities. Inflammatory bowel disease (IBD) is one of many chronic diseases that may benefit from these advances in digital health. This review intends to lay a foundation for clinicians and technologists to understand future directions and opportunities together. Objective This review covers mobile health apps that have been used in IBD, how they have fit into a clinical care framework, and the challenges that clinicians and technologists face in approaching future opportunities. Methods We searched PubMed, Scopus, and ClinicalTrials.gov to identify mobile apps that have been studied and were published in the literature from January 1, 2010, to April 19, 2019. The search terms were (“mobile health” OR “eHealth” OR “digital health” OR “smart phone” OR “mobile app” OR “mobile applications” OR “mHealth” OR “smartphones”) AND (“IBD” OR “Inflammatory bowel disease” OR “Crohn's Disease” (CD) OR “Ulcerative Colitis” (UC) OR “UC” OR “CD”), followed by further analysis of citations from the results. We searched the Apple iTunes app store to identify a limited selection of commercial apps to include for discussion. Results A total of 68 articles met the inclusion criteria. A total of 11 digital health apps were identified in the literature and 4 commercial apps were selected to be described in this review. While most apps have some educational component, the majority of apps focus on eliciting patient-reported outcomes related to disease activity, and a few are for treatment management. Significant benefits have been seen in trials relating to education, quality of life, quality of care, treatment adherence, and medication management. No studies have reported a negative impact on any of the above. There are mixed results in terms of effects on office visits and follow-up. Conclusions While studies have shown that digital health can fit into, complement, and improve the standard clinical care of patients with IBD, there is a need for further validation and improvement, from both a clinical and patient perspective. Exploring new research methods, like microrandomized trials, may allow for more implementation of technology and rapid advancement of knowledge. New technologies that can objectively and seamlessly capture remote data, as well as complement the clinical shift from symptom-based to inflammation-based care, will help the clinical and health technology communities to understand the full potential of digital health in the care of IBD and other chronic illnesses. 
    more » « less
  4. null (Ed.)
    Abstract Stigma toward people living with HIV/AIDS (PLWHA) has impeded the response to the disease across the world. Widespread stigma leads to poor adherence of preventative measures while also causing PLWHA to avoid testing and care, delaying important treatment. Stigma is clearly a hugely complex construct. However, it can be broken down into components which include internalized stigma (how people with the trait feel about themselves) and enacted stigma (how a community reacts to an individual with the trait). Levels of HIV/AIDS-related stigma are particularly high in sub-Saharan Africa, which contributed to a surge in cases in Kenya during the late twentieth century. Since the early twenty-first century, the United Nations and governments around the world have worked to eliminate stigma from society and resulting public health education campaigns have improved the perception of PLWHA over time, but HIV/AIDS remains a significant problem, particularly in Kenya. We take a data-driven approach to create a time-dependent stigma function that captures both the level of internalized and enacted stigma in the population. We embed this within a compartmental model for HIV dynamics. Since 2000, the population in Kenya has been growing almost exponentially and so we rescale our model system to create a coupled system for HIV prevalence and fraction of individuals that are infected that seek treatment. This allows us to estimate model parameters from published data. We use the model to explore a range of scenarios in which either internalized or enacted stigma levels vary from those predicted by the data. This analysis allows us to understand the potential impact of different public health interventions on key HIV metrics such as prevalence and disease-related death and to see how close Kenya will get to achieving UN goals for these HIV and stigma metrics by 2030. 
    more » « less
  5. Abstract

    This article examines howHIVpolicies and the funding priorities of global institutions affect practices in prenatal clinics and the quality of healthcare women receive. Data consist of observations at health centres in Lilongwe, Malawi and interviews with providers (N = 37). I argue that neoliberal ideology, which structures the global health field, produces a fragmented healthcare system on the ground. Findings show two kinds of healthcare practices within the same clinic: donor‐fundedNGOs took onHIVservices while government providers focused on prenatal care.NGOpractices were defined bysurveillance, where providers targeted pregnantHIV‐positive women and intensively monitored their adherence to drug treatment. In contrast, state‐led practices were defined byrationing. Government providers worked with all pregnant women, but with staff and resource shortages, they limited time and services for each patient in order to serve everyone. This paper builds on concepts of therapeutic citizenship and clientship by exploring how global health priorities produce different conditions, practices and outcomes ofNGOand state‐led care.

     
    more » « less