skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Local Statistics of a Premixed Turbulent Bunsen Flame
The local interactions between the flame-front and turbulence control the dynamics, morphology, and propagation of a premixed turbulent flame. To investigate such complex dynamics of a flame–turbulence interaction, we present an experimental exposition of a premixed turbulent Bunsen flame. Several quantities have been evaluated to assess the flame–turbulence interaction. We first measured the statistics of the flowfield adjacent to the flame and compared it with the cold flow. This allowed us to evaluate the effect of the flame on the upstream turbulence. Subsequently, we performed statistical analyses of the local values of various stretch rates and quantified how their distribution changes with turbulence intensity and flame temperature. We also evaluated the pairwise relation among various stretch rates to assess their dependence on each other. Finally, we used flame particles to evaluate the Lagrangian evolution of stretch rates conditioned on flame-fronts. All the analyses presented in this work point out Karlovitz number as a key factor in determining the flame–turbulence interaction. Specifically, we observe a stronger influence of turbulent eddies on flames with increasing Karlovitz number, as evidenced by the reduced effect of flame on upstream flow, wider probability distribution functions of stretch rates, and increased persistence timescales for stretches.  more » « less
Award ID(s):
2053671
PAR ID:
10585091
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIAA
Date Published:
Journal Name:
AIAA Journal
Volume:
62
Issue:
9
ISSN:
0001-1452
Page Range / eLocation ID:
3305 to 3313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the flamelet regime of turbulent premixed combustion the enhancement in the burning rates originates primarily from surface wrinkling. In this work we investigate the Reynolds number dependence of burning rates of spherical turbulent premixed methane/air flames in decaying isotropic turbulence with direct numerical simulations. Several simulations are performed by varying the Reynolds number, while keeping the Karlovitz number the same, and the temporal evolution of the flame surface is compared across cases by combining the probability density function of the radial distance of the flame surface from the origin with the surface density function formalism. Because the mean area of the wrinkled flame surface normalized by the area of a sphere with radius equal to the mean flame radius is proportional to the product of the turbulent flame brush thickness and peak surface density within the brush, the temporal evolution of the brush and peak surface density are investigated separately. The brush thickness is shown to scale with the integral scale of the flow, evolving due to decaying velocity fluctuations and stretch. When normalized by the integral scale, the wrinkling scale defined as the inverse of the peak surface density is shown to scale with Reynolds number across simulations and as turbulence decays. As a result, the area ratio and the burning rate are found to increase as $${Re}_{\lambda }^{1.13}$$ , in agreement with recent experiments on spherical turbulent premixed flames. We observe that the area ratio does not vary with turbulent intensity when holding the Reynolds number constant. 
    more » « less
  2. The burning rate in a spherically turbulent premixed flame is explored using direct numerical simulations, and a model of ordinary differential equations is proposed. The numerical dataset, from a previous work, is obtained from direct numerical simulations of confined spherical flames in isotropic turbulence over a range of Reynolds numbers. We begin the derivation of the model with an equation for the burning rate for the domain under consideration, and using a thin flame assumption and a two-fluid approach, we find the normalized turbulent burning rate to be controlled by the increase in flame surface area due to turbulent wrinkling, and correction factor which is observed to be consistently less than unity. A Reynolds scaling hypothesis for the flame turbulent wrinkling from a previous work using the same numerical dataset is used to model the term controlling the increase in flame surface area. The correction factor is hypothesized to reflect flame stretch effects, and hence this factor is modeled using Markstein theory applied to global averaged quantities. The ordinary differential equations are rewritten to reflect easily observable quantities such as the chamber pressure and mean flame radius, and then expressed in dimensionless form to assess dependence on various dimensionless parameters. The model predictions are found to be in good agreement with the numerical data within expected variances. Additionally, Markstein theory is found to be sufficient in describing the effects of flame stretch in the turbulent premixed flames under consideration. 
    more » « less
  3. The objective of this work is to provide physical insight into the mechanisms governing flame–turbulence interactions and explore the impact of the ubiquitous Darrieus–Landau instability on the propagation. It is based on the hydrodynamic theory of premixed flames that considers the flame thickness much smaller than all other fluidynamical length scales. In this asymptotic limit, the flame is thus confined to a surface whilst the diffusion and reaction processes occurring inside the flame zone are accounted for by two parameters: the unburned-to-burned density ratio and the Markstein length. The robust model, which is free of phenomenology and turbulence modelling assumptions, makes transparent the mutual interactions between the flame and the fluid flow, and permits examining trends in flame and flow characteristics while varying the turbulence intensity and mixture properties. It is used in this study to examine the morphological changes of the flame surface that result from the intertwined effects of the turbulence and instability, as demonstrated by the local displacement and curvature of the flame front, the extent of wrinkling and folding of the flame surface, and the overall flame brush thickness. It also provides a direct evaluation of the turbulent flame speed and its dependence on the mean flame curvature and on the hydrodynamic strain that it experiences. Also discussed are the effects of the flame on the flow by examining the various mechanisms of enstrophy and scalar gradient production/destruction, the degree of anisotropy created in the burned gas, and the restructuring of the vortical motion beyond the flame. 
    more » « less
  4. Abstract In this study, the highly nonlinear and multi-scale flame-turbulence interactions prevalent in turbulent premixed flames are examined by using direct numerical simulation (DNS) datasets to understand the effects of increase in pressure and changes in the characteristic scale ratios at high pressure. Such flames are characterized by length-scale ratio (ratio of integral length scale and laminar thermal flame thickness) and velocity-scale ratio (ratio of turbulence intensity and laminar flame speed). A canonical test configuration corresponding to an initially laminar methane/air lean premixed flame interacting with decaying isotropic turbulence is considered. We consider five cases with the initial Karlovitz number of 18, 37, 126, and 260 to examine the effects of an increase in pressure from 1 to 10 atm with fixed turbulence characteristics and at a fixed Karlovitz number, and the changes to characteristic scale ratios at the pressure of 10 atm. The increase in pressure for fixed turbulence characteristics leads to enhanced flame broadening and wrinkling due to an increase in the range of energetic scales of motion. This further manifests into affecting the spatial and state-space variation of thermo-chemical quantities, single point statistics, and the relationship of heat-release rate to the flame curvature and tangential strain rate. Although these results can be inferred in terms of an increase in Karlovitz number, the effect of an increase in pressure at a fixed Karlovitz number shows differences in the spatial and state-space variations of thermo-chemical quantities and the relationship of the heat release rate with the curvature and tangential strain rate. This is due to a higher turbulent kinetic energy associated with the wide range of scales of motion at atmospheric pressure. In particular, the magnitude of the correlation of the heat release rate with the curvature and the tangential strain rate tend to decrease and increase, respectively, with an increase in pressure. Furthermore, the statistics of the flame-turbulence interactions at high pressure also show sensitivity to the changes in the characteristic length- and velocity-scale ratios. The results from this study highlight the need to accurately account for the effects of pressure and characteristic scales for improved modeling of such flames. 
    more » « less
  5. This work characterizes the compressibility dynamics in turbulent fast flames for a range of turbulent flame speeds. These turbulent fast flames experience increased effects of compressibility through the formation of strong shocks and may develop a runaway acceleration combined with a pressure buildup that leads to turbulence induced deflagration-to-detonation transition (tDDT). Simultaneous high-speed particle image velocimetry, OH* chemiluminescence, schlieren, and pressure measurements are used to examine the reacting flow field and flame dynamics. We examine flames with turbulent flame speeds ranging from 100 to 600 m/s. At lower turbulent flame speeds, the flame is not able to produce favorable background conditions for deflagration-to-detonation transition (DDT) onset, and thus flame compressibility and turbulence amplification are less dominant, resulting in a weaker acoustic coupling between the flame and compressed region. As the turbulent burning velocities exceed the Chapman–Jouguet deflagration speed, favorable background conditions are produced, as we observe flame-generated shocks and flame-generated turbulence with higher turbulent velocities and larger turbulent scales. At this regime, the flame is categorized to be at the runaway transition regime that leads to tDDT. 
    more » « less