The University of Southern California’s (USC) Joint Educational Project’s STEM Education Programs hosted a three-day summer workshop focused on marine microbiology and coastal deoxygenation for high school educators. To increase ocean literacy in high school students from Title I schools, topical marine science research was translated into four lesson plans appropriate for classrooms that teach biology and environmental science. The lesson plans focus on how marine microbes affect and are affected by the dissolved oxygen content of seawater but covered diverse oceanography topics including microbial ecology, nutrient cycling, physical ocean dynamics, and climate change. This education framework was designed to promote and facilitate hands on discovery-based learning and making observations about the natural world. The workshop and lesson plan development were executed in partnership with faculty and graduate students researching marine microbes and oceanography from USC’s Marine and Environmental Biology department to provide scientific expertise on the subject matter. At the workshop, educators were guided through each lesson plan and given classroom sets of materials to complete each of the experiments in their own classrooms. Educators also had the opportunity to experience the academic research process at both USC and the Wrigley Institute of Environmental Studies on Catalina Island, California. Teachers valued this interactive experience to learn from professional scientists and STEM educators. They left the workshop equipped with the knowledge and confidence to teach these marine microbiology and biogeochemistry concepts in their classrooms.
more »
« less
This content will become publicly available on December 1, 2025
Mycology in the agriscience classroom: A curriculum based on wild foraged mushroom certification
Abstract The overarching goal of this impact project is to make mycology accessible to more agriscience educators and students. Lesson plans were prepared to link core competencies and science standards to the Wild‐Foraged Mushroom certification. Incorporating mycology into the classroom has many benefits, including discussions on food safety and regulation, the role of ecology in agroecosystems, and taxonomic identification skills. Fungi also play many different roles in the ecosystem, including decomposers, mutualists, and parasites. Lesson plans in three topic areas were produced: mushroom identification and fungal ecology, mushroom growth and food safety, and mushrooms as a renewable resource. Examples of hands‐on learning and connections to the Wild‐Foraged Mushroom certification are provided. This certification is available in the state of Michigan; however, lessons could be adapted for use in other regions of the United States. Looking at taxonomy, ecology, food science, and economics through the lens of mycology is an engaging way to motivate students while potentially helping them earn a certification.
more »
« less
- Award ID(s):
- 1946445
- PAR ID:
- 10585093
- Publisher / Repository:
- Natural Sciences Education
- Date Published:
- Journal Name:
- Natural sciences education
- Volume:
- 53
- Issue:
- 2
- ISSN:
- 2168-8273
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In recent years, Wyoming has developed Computer Science (CS) standards for adoption and use within K-12 classrooms. These standards, adopted in January of 2022, go into effect for the 2022-2023 school year. The University of Wyoming has offered two different computer science week-long professional developments for teachers. Many K-12 teachers do not have a CS background, so developing CS lessons plans can be a challenge in these PDs.This research study is centered around three central questions: 1) To what extent did K-12 teachers integrate computing topics into their PD created lesson plans; 2) How do the teacher perceptions from the two CS PDs compare to each other; and 3) How was the CS PD translated to classroom activity? The first PD opportunity (n=14), was designed to give hands-on learning with CS topics focused on cybersecurity. The second PD opportunity (n=28), focused on integrating CS into existing curricula. At the end of each of these PDs, teacher K-12 teachers incorporated CS topics into their selected existing lesson plan(s). Additionally, a support network was implemented to support excellence in CS education throughout the state. This research study team evaluated the lesson plans developed during each PD event, by using a rubric on each lesson plan. Researchers collected exit surveys from the teachers. Implementation metrics were also gathered, including, how long each lesson lasted, how many students were involved in the implementation, what grades the student belonged to, the basic demographics of the students, the type of course the lesson plan was housed in, if the K-12 teacher reached their intended purpose, what evidence the K-12 teacher had of the success of their lesson plan, data summaries based on supplied evidence, how the K-12 teachers would change the lesson, the challenges and successes they experienced, and samples of student work. Quantitative analysis was basic descriptive statistics. Findings, based on evaluation of 40+ lessons, taught to over 1500 K-12 students, indicate that when assessed on a three point rubric of struggling, emerging, or excellent - certain components (e.g., organization, objectives, integration, activities & assessment, questions, and catch) of K-12 teacher created lessons plans varied drastically. In particular, lesson plan organization, integration, and questions each had a significant number of submissions which were evaluated as "struggling" [45%, 46%, 41%] through interesting integration, objectives, activities & assessment, and catch all saw submissions which were evaluated as "excellent" [43%, 48%, 43%, 48%]. The relationship between existing K-12 policies and expectations surfaces within these results and in combination with other findings leads to implications for the translation of current research practices into pre-collegiate PDs.more » « less
-
When conducting a science investigation in biology, chemistry, physics or earth science, students often need to obtain, organize, clean, and analyze the data in order to draw conclusions about a particular phenomenon. It can be difficult to develop lesson plans that provide detailed or explicit instructions about what students need to think about and do to develop a firm conceptual understanding, particularly regarding data analysis. This article demonstrates how computational thinking principles and data practices can be merged to develop more effective science investigation lesson plans. The data practices of creating, collecting, manipulating, visualizing, and analyzing data are merged with the computational thinking practices of decomposition, pattern recognition, abstraction, algorithmic thinking, and automation to create questions for teachers and students that help them think through the underlying processes that happen with data during high school science investigations. The questions can either be used to elaborate lesson plans or embedded into lesson plans for students to consider how they are using computational thinking during their data practices in science.more » « less
-
To broaden indigenous students' participation in Computer Science (CS) education, we conducted a research practitioner partnership (RPP) project, where teachers were taught the CS principles lessons offered by Code.org and asked to integrate mobile application development within their current courses. Additionally, modules and guidance were provided on culturally responsive pedagogy (CRP), and an in-classroom implementation of a five-day lesson plan was co-created via a participatory approach. In this experience report, we describe the RPP organization and early findings from our collected teachers' pre/post survey, lesson plans, projects, and students' pre/post survey. The positive outcomes from our RPP project provided valuable teacher learning experiences and actionable, culturally responsive computing lesson plans for the indigenous community.more » « less
-
This study analyzed 281 lesson plans collected from the producers’ websites of 12 educational physical computing and robotics (ePCR) devices. We extracted and coded five variables from each lesson. They were ePCR functionality, coding skills, computational thinking skills, math knowledge, and activity design. First, a two-step cluster analysis was administered to find how three ePCR-related knowledge: ePCR functionality, coding skills, and computational thinking skills, were integrated to teach students ePCR technology in middle-grade math lessons. Results showed three types of lesson plans, including lessons to use basic ePCR functionality to teach students lower-level CT skills, lessons to teach students basic to intermediate coding skills, and lessons to use the technology at the advanced level. Next, we applied the Technological Pedagogical Content Knowledge (TPACK) framework and conducted a second two-step cluster analysis to identify how the technology (ePCR technology), content (math knowledge), and pedagogy (activity design) were integrated into those lesson plans. Results suggested ten clusters of lesson plans with distinct features. We summarized those ten lesson clusters into five categories: 1) ePCR technology lessons, 2) transdisciplinary problem-based learning lessons, 3) technology-assisted lessons, 4) lessons without real-world connections, and 5) lessons integrating middle-grade math learning into ePCR projects. Implications for educators and researchers were discussed at the end of the article.more » « less
An official website of the United States government
