null
                            (Ed.)
                        
                    
            
                            We give the first polynomial-time algorithm for robust regression in the list-decodable setting where an adversary can corrupt a greater than 1/2 fraction of examples. For any our algorithm takes as input a sample of n linear equations where (1- \alpha) n of the equations are {\em arbitrarily} chosen. It outputs a list that contains a linear function that is close to the truth. Our algorithm succeeds whenever the inliers are chosen from a \emph{certifiably} anti-concentrated distribution D. In particular, this gives an efficient algorithm to find an optimal size list when the inlier distribution is standard Gaussian. For discrete product distributions that are anti-concentrated only in \emph{regular} directions, we give an algorithm that achieves similar guarantee under the promise that the true linear function has all coordinates of the same magnitude. To complement our result, we prove that the anti-concentration assumption on the inliers is information-theoretically necessary. Our algorithm is based on a new framework for list-decodable learning that strengthens the `identifiability to algorithms' paradigm based on the sum-of-squares method. 
                        more » 
                        « less   
                     An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    