skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Certificates of Anti-Concentration Beyond Gaussians
A set of high dimensional points X ={x1,x2,…,xn}⊆Rd in isotropic position is said to be δ -anti concentrated if for every direction v, the fraction of points in X satisfying |⟨xi,v⟩|⩽δ is at most O(δ). Motivated by applications to list-decodable learning and clustering, three recent works [7], [44], [71] considered the problem of constructing efficient certificates of anti-concentration in the average case, when the set of points X corresponds to samples from a Gaussian distribution. Their certificates played a crucial role in several subsequent works in algorithmic robust statistics on list-decodable learning and settling the robust learnability of arbitrary Gaussian mixtures. Unlike related efficient certificates of concentration properties that are known for wide class of distri-butions [52], the aforementioned approach has been limited only to rotationally invariant distributions (and their affine transformations) with the only prominent example being Gaussian distributions. This work presents a new (and arguably the most natural) formulation for anti- concentration. Using this formulation, we give quasi-polynomial time verifiable sum-of-squares certificates of anti-concentration that hold for a wide class of non-Gaussian distributions including anti-concentrated bounded product distributions and uniform distributions over Lp balls (and their affine transformations). Consequently, our method upgrades and extends results in algorithmic robust statistics e.g., list-decodable learning and clustering, to such distributions. As in the case of previous works, our certificates are also obtained via relaxations in the sum-of-squares hierarchy. However, the nature of our argument differs significantly from prior works that formulate anti-concentration as the non-negativity of an explicit polynomial. Our argument constructs a canonical integer program for anti-concentration and analysis a SoS relaxation of it, independent of the intended application. The explicit polynomials appearing in prior works can be seen as specific dual certificates to this program. From a technical standpoint, unlike existing works that explicitly construct sum-of-squares certificates, our argument relies on duality and analyzes a pseudo-expectation on large subsets of the input points that take a small value in some direction. Our analysis uses the method of polynomial reweightings to reduce the problem to analyzing only analytically dense or sparse directions.  more » « less
Award ID(s):
2422342
PAR ID:
10585217
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3315-1674-1
Page Range / eLocation ID:
970 to 987
Format(s):
Medium: X
Location:
Chicago, IL, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We give the first polynomial-time algorithm for robust regression in the list-decodable setting where an adversary can corrupt a greater than 1/2 fraction of examples. For any our algorithm takes as input a sample of n linear equations where (1- \alpha) n of the equations are {\em arbitrarily} chosen. It outputs a list that contains a linear function that is close to the truth. Our algorithm succeeds whenever the inliers are chosen from a \emph{certifiably} anti-concentrated distribution D. In particular, this gives an efficient algorithm to find an optimal size list when the inlier distribution is standard Gaussian. For discrete product distributions that are anti-concentrated only in \emph{regular} directions, we give an algorithm that achieves similar guarantee under the promise that the true linear function has all coordinates of the same magnitude. To complement our result, we prove that the anti-concentration assumption on the inliers is information-theoretically necessary. Our algorithm is based on a new framework for list-decodable learning that strengthens the `identifiability to algorithms' paradigm based on the sum-of-squares method. 
    more » « less
  2. Consider a system of m polynomial equations {pi(x)=bi}i≤m of degree D≥2 in n-dimensional variable x∈ℝn such that each coefficient of every pi and bis are chosen at random and independently from some continuous distribution. We study the basic question of determining the smallest m -- the algorithmic threshold -- for which efficient algorithms can find refutations (i.e. certificates of unsatisfiability) for such systems. This setting generalizes problems such as refuting random SAT instances, low-rank matrix sensing and certifying pseudo-randomness of Goldreich's candidate generators and generalizations. We show that for every d∈ℕ, the (n+m)O(d)-time canonical sum-of-squares (SoS) relaxation refutes such a system with high probability whenever m≥O(n)⋅(nd)D−1. We prove a lower bound in the restricted low-degree polynomial model of computation which suggests that this trade-off between SoS degree and the number of equations is nearly tight for all d. We also confirm the predictions of this lower bound in a limited setting by showing a lower bound on the canonical degree-4 sum-of-squares relaxation for refuting random quadratic polynomials. Together, our results provide evidence for an algorithmic threshold for the problem at m≳O˜(n)⋅n(1−δ)(D−1) for 2nδ-time algorithms for all δ. 
    more » « less
  3. In this work, we present an abstract framework for some algebraic error-correcting codes with the aim of capturing codes that are list-decodable to capacity, along with their decoding algorithms. In the polynomial ideal framework, a code is specified by some ideals in a polynomial ring, messages are polynomials and the encoding of a message polynomial is the collection of residues of that polynomial modulo the ideals. We present an alternate way of viewing this class of codes in terms of linear operators, and show that this alternate view makes their algorithmic list-decodability amenable to analysis. Our framework leads to a new class of codes that we call affine Folded Reed-Solomon codes (which are themselves a special case of the broader class we explore). These codes are common generalizations of the well-studied Folded Reed-Solomon codes and Univariate Multiplicity codes as well as the less-studied Additive Folded Reed-Solomon codes, and lead to a large family of codes that were not previously known/studied. More significantly our framework also captures the algorithmic list-decodability of the constituent codes. Specifically, we present a unified view of the decoding algorithm for ideal-theoretic codes and show that the decodability reduces to the analysis of the distance of some related codes. We show that a good bound on this distance leads to a capacity-achieving performance of the underlying code, providing a unifying explanation of known capacity-achieving results. In the specific case of affine Folded Reed-Solomon codes, our framework shows that they are efficiently list-decodable up to capacity (for appropriate setting of the parameters), thereby unifying the previous results for Folded Reed-Solomon, Multiplicity and Additive Folded Reed-Solomon codes. 
    more » « less
  4. We develop new techniques for proving lower bounds on the least singular value of random matrices with limited randomness. The matrices we consider have entries that are given by polynomials of a few underlying base random variables. This setting captures a core technical challenge for obtaining smoothed analysis guarantees in many algorithmic settings. Least singular value bounds often involve showing strong anti-concentration inequalities that are intricate and much less understood compared to concentration (or large deviation) bounds. First, we introduce a general technique for proving anti-concentration that uses well-conditionedness properties of the Jacobian of a polynomial map, and show how to combine this with a hierarchical net argument to prove least singular value bounds. Our second tool is a new statement about least singular values to reason about higher-order lifts of smoothed matrices and the action of linear operators on them. Apart from getting simpler proofs of existing smoothed analysis results, we use these tools to now handle more general families of random matrices. This allows us to produce smoothed analysis guarantees in several previously open settings. These new settings include smoothed analysis guarantees for power sum decompositions and certifying robust entanglement of subspaces, where prior work could only establish least singular value bounds for fully random instances or only show non-robust genericity guarantees. 
    more » « less
  5. We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a nearly optimal fraction of adversarially-corrupted samples. 
    more » « less