skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging microearthquake rupture processes using a dense array in Oklahoma
Both large and small earthquakes rupture in complex ways. However, microearthquakes are often simplified as point sources and their rupture properties are challenging to resolve. We leverage seismic wavefields recorded by a dense array in Oklahoma to image microearthquake rupture processes. We construct machine-learning enabled catalogs and identify four spatially disconnected seismic clusters. These clusters likely delineate near-vertical strike-slip faults. We develop a new approach to use the maximum absolute SH-wave amplitude distributions (S-wave wavefields) to compare microearthquake rupture processes. We focus on one cluster with earthquakes located beneath the dense array and have a local magnitude range of -1.3 to 2.3. The S-wave wavefields of single earthquakes are generally coherent but differ slightly between the low-frequency (<12 Hz) and high-frequency (>12 Hz) bands. The S-wave wavefields are coherent between different earthquakes at low frequencies with average correlation coefficients greater than 0.95. However, the wavefield coherence decreases with increasing frequency for different earthquakes. This reduced coherence is likely due to the rupture differences among individual earthquakes. Our results suggest that earthquake slip of the microearthquakes dominates the radiated S-wave wavefields at higher frequencies. Our method suggests a new direction in resolving small earthquake source attributes using dense seismic arrays without assuming a rupture model.  more » « less
Award ID(s):
2143413
PAR ID:
10585220
Author(s) / Creator(s):
;
Publisher / Repository:
Seismica
Date Published:
Journal Name:
Seismica
Volume:
3
Issue:
2
ISSN:
2816-9387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Large earthquakes rupture faults over hundreds of kilometers within minutes. Finite‐fault models image these processes and provide observational constraints for understanding earthquake physics. However, finite‐fault inversions are subject to non‐uniqueness and uncertainties. The diverse range of published models for the well‐recorded 2011 9.0 Tohoku‐Oki earthquake illustrates this challenge, and its rupture process remains under debate. Here, we comprehensively compare 32 published finite‐fault models of the Tohoku‐Oki earthquake. We aim to identify the most coherent slip features of the Tohoku‐Oki earthquake from these slip models and develop a new method for quantitatively analyzing their variations. We find that the models correlate poorly at 1‐km subfault size, irrespective of the data type. In contrast, model agreement improves significantly with increasing subfault sizes, consistently showing that the largest slip occurs up‐dip of the hypocenter near the trench. We use the set of models to test the sensitivity of available teleseismic, regional seismic, and geodetic observations. For the large Tohoku‐Oki earthquake, we find that the analyzed finite‐fault models are less sensitive to slip features smaller than 64 km. When we use the models to compute synthetic seafloor deformation, we observe strong variations in the synthetics, suggesting their sensitivity to small‐scale slip features. Our newly developed approach offers a quantitative framework to identify common features in distinct finite‐fault slip models and to analyze their robustness using regional and global geophysical observations for megathrust earthquakes. Our results indicate that dense offshore instrumentation is critical for resolving the rupture complexities of megathrust earthquakes. 
    more » « less
  2. ABSTRACT Although the Brune source model describes earthquake moment release as a single pulse, it is widely used in studies of complex earthquakes with multiple episodes of high moment release (i.e., multiple subevents). In this study, we investigate how corner frequency estimates of earthquakes with multiple subevents are biased if they are based on the Brune source model. By assuming complex sources as a sum of multiple Brune sources, we analyze 1640 source time functions of Mw 5.5–8.0 earthquakes in the seismic source characteristic retrieved from deconvolving teleseismic body waves catalog to estimate the corner frequencies, onset times, and seismic moments of subevents. We identify more subevents for strike-slip earthquakes than dip-slip earthquakes, and the number of resolvable subevents increases with magnitude. We find that earthquake corner frequency correlates best with the corner frequency of the subevent with the highest moment release (i.e., the largest subsevent). This suggests that, when the Brune model is used, the estimated corner frequency and, therefore, the stress drop of a complex earthquake is determined primarily by the largest subevent rather than the total rupture area. Our results imply that, in addition to the simplified assumption of a radial rupture area with a constant rupture velocity, the stress variation of asperities, rather than the average stress change of the whole fault, contributes to the large variance of stress-drop estimates. 
    more » « less
  3. Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. The properties and structure of fault damage zones are often characterized using dense arrays of seismic stations located directly above the faults. However, such arrays may not always be available. Hence, our research aims to develop a novel method to image fault damage zones using broadband stations at relatively larger distances. Previous kinematic simulations and a case study of the 2003 Big Bear earthquake sequence demonstrated that fault damage zones can act as effective waveguides, amplifying high-frequency waves along directions close to fault strike via multiple reflections within the fault damage zone. The amplified high-frequency energy can be observed by stacking P-wave spectra of earthquake clusters with highly-similar waveforms (Huang et al., 2016), and the frequency band which is amplified may be used to estimate the width and velocity contrast of the fault damage zone. We attempt to identify the high-frequency peak associated with fault zone waves in stacked spectra by conducting a large-scale study of small earthquakes (M1.5–3). We use high quality broadband data from seismic stations at hypocentral distances of 20-80 km in the 2019 Ridgecrest earthquake regions. First, we group the Ridgecrest earthquakes in clusters by their locations and their waveform similarity, and then stack their velocity spectra to average the source effects of individual earthquakes. Our results show that the stations close to the fault strike record more high-frequency energies around the characteristic frequency of fault zone reflections. We find that the increase in the amount of high-frequencies is consistent across clusters with average magnitudes ranging from 1.6-2.4, which suggests that the azimuthal variation in spectra is caused by fault zone amplification rather than rupture directivity. We will apply our method to other fault zones in California, in order to search for fault damage zone structures and estimate their material properties. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present an approach for generating stochastic scenario rupture models and semistochastic broadband seismic waveforms that include validated P waves, an important feature for application to early warning systems testing. There are few observations of large magnitude earthquakes available for development and refinement of early warning procedures; thus, simulated data are a valuable supplement. We demonstrate the advantage of using the Karhunen–Loève expansion method for generating stochastic scenario rupture models, as it allows the user to build in desired spatial qualities, such as a slip inversion, as a mean background slip model. For waveform computation, we employ a deterministic approach at low frequencies (<1  Hz) and a semistochastic approach at high frequencies (>1  Hz). Our approach follows Graves and Pitarka (2010) and extends to model P waves. We present the first validation of semistochastic broadband P waves, comparing our waveforms against observations of the 2014 Mw 8.1 Iquique, Chile, earthquake in the time domain and across frequencies of interest. We then consider the P waves in greater detail, using a set of synthetic waveforms generated for scenario ruptures in the Cascadia subduction zone. We confirm that the time-dependent synthetic P-wave amplitude growth is consistent with previous analyses and demonstrate how the data could be used to simulate earthquake early warning procedures. 
    more » « less
  5. Abstract Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data. 
    more » « less