Abstract The skin is our outer permeability and immune defense barrier against myriad external assaults. Aryl hydrocarbon receptor (AhR) senses environmental factors and regulates barrier robustness and immune homeostasis. AhR agonists have been approved by the FDA for psoriasis treatment and are in clinical trials for the treatment of atopic dermatitis (AD), but the underlying mechanism of action remains poorly defined. Here, we report thatOVOL1/Ovol1is a conserved and direct transcriptional target of AhR in epidermal keratinocytes. We show that OVOL1/Ovol1 influences AhR-mediated regulation of keratinocyte gene expression and thatOVOL1/Ovol1ablation in keratinocytes impairs the barrier-promoting function of AhR, exacerbating AD-like inflammation. Mechanistically, we have identified Ovol1’s direct downstream targets genome-wide and provided in vivo evidence supporting the role ofId1as a functional target in barrier maintenance, disease suppression, and neutrophil accumulation. Furthermore, our findings reveal that an IL-1/dermal γδT cell axis exacerbates type 2 and 3 immune responses downstream of barrier perturbation inOvol1-deficient AD skin. Finally, we present data suggesting the clinical relevance of OVOL1 and ID1 functions in human AD skin. Our study highlights a keratinocyte-intrinsic AhR-Ovol1-Id1 regulatory axis that promotes both epidermal and immune homeostasis in the context of skin inflammation, identifying new therapeutic targets. 
                        more » 
                        « less   
                    This content will become publicly available on January 16, 2026
                            
                            Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease
                        
                    
    
            Dysregulations of epithelial-immune interactions frequently culminate in chronic inflammatory diseases of the skin, lungs, kidneys, and gastrointestinal tract. Yet, the intraepithelial processes that initiate and perpetuate inflammation in these organs are poorly understood. Here, by utilizing redox lipidomics we identified ferroptosis-associated peroxidation of polyunsaturated phosphatidylethanolamines in the epithelia of patients with asthma, cystic fibrosis, psoriasis, and renal failure. Focusing on psoriasis as a disease model, we used high-resolution mass spectrometry imaging and identified keratin 14–expressing (K14-expressing) keratinocytes executing a ferroptotic death program in human psoriatic skin. Psoriatic phenotype with characteristic Th1/Th17 skin and extracutaneous immune responses was initiated and maintained in a murine model designed to actuate ferroptosis in a fraction of K14+ glutathione peroxidase 4–deficient (Gpx4-deficient) epidermal keratinocytes. Importantly, an antiferroptotic agent, liproxstatin-1, was as effective as clinically relevant biological IL-12/IL-23/ TNF-α–targeting therapies or the depletion of T cells in completely abrogating molecular, biochemical, and morphological features of psoriasis. As ferroptosis in select epidermal keratinocytes triggers and sustains a pathological psoriatic multiorgan inflammatory circuit, we suggest that strategies targeting ferroptosis or its causes may be effective in preventing or ameliorating a variety of chronic inflammatory diseases. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2117784
- PAR ID:
- 10585228
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Journal of Clinical Investigation
- Date Published:
- Journal Name:
- Journal of Clinical Investigation
- Edition / Version:
- -
- Volume:
- 135
- Issue:
- 2
- ISSN:
- 1558-8238
- Page Range / eLocation ID:
- 1-17
- Subject(s) / Keyword(s):
- mass spectrometry
- Format(s):
- Medium: X Size: 13MB Other: pdf/A
- Size(s):
- 13MB
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The investigation of gene regulation therapeutics for the treatment of skin‐related diseases is rarely explored in part due to inefficient systemic delivery. In this study, a bottlebrush polymer‐antisense oligonucleotide (ASO) conjugate, termed pacDNA, designed to target IL‐17 receptor A (IL‐17RA), which is involved in psoriasis pathogenesis is presented. Systemic administration of pacDNA led to its accumulation in epidermis, dermis, and hypodermis of mouse skin, reduced IL‐17RA gene expression in skin, and significantly reversed the development of imiquimod (IMQ)‐induced psoriasis in a mouse model. These findings highlight the potential of the pacDNA as a promising nanoconstruct for systemic oligonucleotide delivery to the skin and for treating psoriasis and other skin‐related disorders through systemic administration.more » « less
- 
            Abstract Skin epidermis constitutes the outer permeability barrier that protects the body from dehydration, heat loss, and myriad external assaults. Mechanisms that maintain barrier integrity in constantly challenged adult skin and how epidermal dysregulation shapes the local immune microenvironment and whole‐body metabolism remain poorly understood. Here, we demonstrate that inducible and simultaneous ablation of transcription factor‐encodingOvol1andOvol2in adult epidermis results in barrier dysregulation through impacting epithelial‐mesenchymal plasticity and inflammatory gene expression. We find that aberrant skin immune activation then ensues, featuring Langerhans cell mobilization and T cell responses, and leading to elevated levels of secreted inflammatory factors in circulation. Finally, we identify failure to gain body weight and accumulate body fat as long‐term consequences of epidermal‐specificOvol1/2loss and show that these global metabolic changes along with the skin barrier/immune defects are partially rescued by immunosuppressant dexamethasone. Collectively, our study reveals key regulators of adult barrier maintenance and suggests a causal connection between epidermal dysregulation and whole‐body metabolism that is in part mediated through aberrant immune activation.more » « less
- 
            The immune system undergoes marked changes during aging characterized by a state of chronic, low-grade inflammation, so called inflammaging. Domestic dogs are the most morphological and physiological diverse group of mammals, with the widest range in body masses for a single species. Additionally, smaller dogs tend to live significantly longer than larger dogs across all breeds. Body mass is intricately linked to mass-specific metabolism and aging rates, thus, dogs are exemplary for studies in inflammaging. Dermal fibroblasts cells play an important role in skin inflammation, and as such, are a good cell type to determine inflammatory patterns in dogs. Here, we examine aerobic and glycolytic cellular metabolism, and IL-6 concentrations in primary fibroblast cells isolated from small and large, young and old dogs when treated with lipopolysaccharide (LPS) from Escherichia coli to stimulate an inflammatory phenotype. We found no differences in cellular metabolism of any group when treated with LPS. Unlike mice and humans, there was a less drastic amplification of IL-6 concentration after LPS treatment in the geriatric population of dogs compared with puppies. We also found evidence that large breed puppies have significantly less background or control IL-6 concentrations compared with small breed puppies. This implies that the patterns of inflammaging in dogs may be distinct and different from other mammals commonly studied.more » « less
- 
            Blaser, Martin J (Ed.)ABSTRACT Haemophilus ducreyicauses the genital ulcer disease chancroid and cutaneous ulcers in children. To study its pathogenesis, we developed a human challenge model in which we infect the skin on the upper arm of human volunteers withH. ducreyito the pustular stage of disease. The model has been used to define lesional architecture, describe the immune infiltrate into the infected sites using flow cytometry, and explore the molecular basis of the immune response using bulk RNA-seq. Here, we used single cell RNA-seq (scRNA-seq) and spatial transcriptomics to simultaneously characterize multiple cell types within infected human skin and determine the cellular origin of differentially expressed transcripts that we had previously identified by bulk RNA-seq. We obtained paired biopsies of pustules and wounded (mock infected) sites from five volunteers for scRNA-seq. We identified 13 major cell types, including T- and NK-like cells, macrophages, dendritic cells, as well as other cell types typically found in the skin. Immune cell types were enriched in pustules, and some subtypes within the major cell types were exclusive to pustules. Sufficient tissue specimens for spatial transcriptomics were available from four of the volunteers. T- and NK-like cells were highly associated with multiple antigen presentation cell types. In pustules, type I interferon stimulation was high in areas that were high in antigen presentation—especially in macrophages near the abscess—compared to wounds. Together, our data provide a high-resolution view of the cellular immune response to the infection of the skin with a human pathogen.IMPORTANCEA high-resolution view of the immune infiltrate due to infection with an extracellular bacterial pathogen in human skin has not yet been defined. Here, we used the human skin pathogenHaemophilus ducreyiin a human challenge model to identify on a single cell level the types of cells that are present in volunteers who fail to spontaneously clear infection and form pustules. We identified 13 major cell types. Immune cells and immune-activated stromal cells were enriched in pustules compared to wounded (mock infected) sites. Pustules formed despite the expression of multiple pro-inflammatory cytokines, such as IL-1β and type I interferon. Interferon stimulation was most evident in macrophages, which were proximal to the abscess. The pro-inflammatory response within the pustule may be tempered by regulatory T cells and cells that express indoleamine 2,3-dioxygenase, leading to failure of the immune system to clearH. ducreyi.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
