The diffuse supernova neutrino background (DSNB)—a probe of the core-collapse mechanism and the cosmic star-formation history—has not been detected, but its discovery may be imminent. A significant obstacle for DSNB detection in Super-Kamiokande (Super-K) is detector backgrounds, especially due to atmospheric neutrinos (more precisely, these are foregrounds), which are not sufficiently understood. We perform the first detailed theoretical calculations of these foregrounds in the range 16–90 MeV in detected electron energy, taking into account several physical and detector effects, quantifying uncertainties, and comparing our predictions to the 15.9 live time years of pre-gadolinium data from Super-K stages I–IV. We show that our modeling reasonably reproduces this low-energy data as well as the usual high-energy atmospheric-neutrino data. To accelerate progress on detecting the DSNB, we outline key actions to be taken in future theoretical and experimental work. In a forthcoming paper, we use our modeling to detail how low-energy atmospheric-neutrino events register in Super-K and suggest new cuts to reduce their impact. Published by the American Physical Society2024 
                        more » 
                        « less   
                    This content will become publicly available on January 1, 2026
                            
                            Neutron tagging can greatly reduce spallation backgrounds in Super-Kamiokande
                        
                    
    
            Super-Kamiokande’s spallation backgrounds—the delayed beta decays of nuclides following cosmic-ray muons—are nearly all produced by the small fraction of muons with hadronic showers. We show that these hadronic showers also produce neutrons; their captures can be detected with high efficiency due to the recent addition of dissolved gadolinium to Super-Kamiokande. We show that new cuts based on the neutron tagging of showers could reduce spallation backgrounds by a factor of at least four beyond present cuts. With further work, this could lead to a near elimination of detector backgrounds above about 6 MeV, which would significantly improve the sensitivity of Super-Kamiokande. These findings heighten the importance of adding gadolinium to Hyper-Kamiokande, which is at a shallower depth. Further, a similar approach could be used in other detectors, for example, the JUNO liquid-scintillator detector, which is also at a shallower depth. Published by the American Physical Society2025 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2310018
- PAR ID:
- 10585256
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 2
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Cosmic-ray muons that enter the Super-Kamiokande detector cause hadronic showers due to spallation in water, producing neutrons and radioactive isotopes. These are a major background source for studies of MeV-scale neutrinos and searches for rare events. In 2020, gadolinium was introduced into the ultra-pure water in the Super-Kamiokande detector to improve the detection efficiency of neutrons. In this study, the cosmogenic neutron yield was measured using data acquired during the period after the gadolinium loading. The yield was found to be ð2.76 0.02ðstatÞ 0.19ðsystÞÞ × 10−4 μ−1 g−1 cm2 at an average muon energy 259 GeV at the Super-Kamiokande detector.more » « less
- 
            We introduce and study the first class of signals that can probe the dark matter in mesogenesis, which will be observable at current and upcoming large volume neutrino experiments. The well-motivated mesogenesis scenario for generating the observed matter-antimatter asymmetry necessarily has dark matter charged under the baryon number. Interactions of these particles with nuclei can induce nucleon decay with kinematics differing from spontaneous nucleon decay. We calculate the rate for this process and develop a simulation of the signal that includes important distortions due to nuclear effects. We estimate the sensitivity of DUNE, Super-Kamiokande, Hyper-Kamiokande, and JUNO to this striking signal. Published by the American Physical Society2024more » « less
- 
            We consider the potential for a 10 kg undoped cryogenic CsI detector operating at the Spallation Neutron Source to measure coherent elastic neutrino-nucleus scattering and its sensitivity to discover new physics beyond the standard model (BSM). Through a combination of increased event rate, lower threshold, and good timing resolution, such a detector would significantly improve on past measurements. We considered tests of several BSM scenarios such as neutrino nonstandard interactions and accelerator-produced dark matter. This detector’s performance was also studied for relevant questions in nuclear physics and neutrino astronomy, namely the weak charge distribution of Cs and I nuclei and detection of neutrinos from a core-collapse supernova. Published by the American Physical Society2024more » « less
- 
            The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of protons on target in (anti)neutrino mode, the analysis finds a exclusion of conservation (defined as ) and a exclusion of the inverted mass ordering. Published by the American Physical Society2025more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
