Abstract Many plant species can exhibit remarkable variation in leaf characteristics, depending on their abiotic and biotic environment. Environmental changes therefore have the potential to alter leaf traits, which in turn scale up to influence ecosystem processes including net primary productivity, susceptibility to fire, and palatability to herbivores. It is not well understood how consistent trait–environment relationships are among species, across sites and over time. This presents a fundamental challenge for functional ecology, because no study can measure all relevant species in all places at all times. Thus, understanding the limits of transferability is critical. We collected leaf trait measurements on 13 species of grass (family: Poaceae) across 11 sites and five years (n = 3091 individuals). Sites were arrayed along a spatial precipitation gradient in coastal northern California (annual precipitation of 590–1350 mm) with substantial interannual precipitation variability (from 60% below the 30‐year average to 100% above average). Temporal and spatial linear relationships between precipitation and specific leaf area (SLA) appear at first idiosyncratic, with each species sometimes displaying positive and sometimes negative responses. However, this variation arises from sampling different portions of an underlying hump‐shaped relationship, which was shared across most species. This hump‐shaped relationship was driven primarily by changes in leaf tissue density. These results suggest the potential for transferability among species, as well as between space and time, as long as the gradients are sufficiently long to capture the nonlinear response. Future work could explore the physiological basis of the nonlinear SLA response, including the possibility that distinct physiological mechanisms are operating at the two extremes of the gradient. 
                        more » 
                        « less   
                    
                            
                            Successful Alien Plant Species Exhibit Functional Dissimilarity From Natives Under Varied Climatic Conditions but Not Under Increased Nutrient Availability
                        
                    
    
            ABSTRACT AimsThe community composition of native and alien plant species is influenced by the environment (e.g., nutrient addition and changes in temperature or precipitation). A key objective of our study is to understand how differences in the traits of alien and native species vary across diverse environmental conditions. For example, the study examines how changes in nutrient availability affect community composition and functional traits, such as specific leaf area and plant height. Additionally, it seeks to assess the vulnerability of high‐nutrient environments, such as grasslands, to alien species colonization and the potential for alien species to surpass natives in abundance. Finally, the study explores how climatic factors, including temperature and precipitation, modulate the relationship between traits and environmental conditions, shaping species success. LocationIn our study, we used data from a globally distributed experiment manipulating nutrient supplies in grasslands worldwide (NutNet). MethodsWe investigate how temporal shifts in the abundance of native and alien species are influenced by species‐specific functional traits, including specific leaf area (SLA) and leaf nutrient concentrations, as well as by environmental conditions such as climate and nutrient treatments, across 17 study sites. Mixed‐effects models were used to assess these relationships. ResultsAlien and native species increasing in their abundance did not differ in their leaf traits. We found significantly lower specific leaf area (SLA) with an increase in mean annual temperature and lower leaf Potassium with mean annual precipitation. For trait–environment relationships, when compared to native species, successful aliens exhibited an increase in leaf Phosphorus and a decrease in leaf Potassium with an increase in mean annual precipitation. Finally, aliens' SLA decreased in plots with higher mean annual temperatures. ConclusionsTherefore, studying the relationship between environment and functional traits may portray grasslands' dynamics better than focusing exclusively on traits of successful species, per se. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2025849
- PAR ID:
- 10585371
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Vegetation Science
- Volume:
- 36
- Issue:
- 2
- ISSN:
- 1100-9233
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Concurrent measurement of multiple foliar traits to assess the full range of trade‐offs among and within taxa and across broad environmental gradients is limited. Leaf spectroscopy can quantify a wide range of foliar functional traits, enabling assessment of interrelationships among traits and with the environment.We analyzed leaf trait measurements from 32 sites along the wide eco‐climatic gradient encompassed by the US National Ecological Observatory Network (NEON). We explored the relationships among 14 foliar traits of 1103 individuals across and within species, and with environmental factors.Across all species pooled, the relationships between leaf economic traits (leaf mass per area, nitrogen) and traits indicative of defense and stress tolerance (phenolics, nonstructural carbohydrates) were weak, but became strong within certain species. Elevation, mean annual temperature and precipitation weakly predicted trait variation across species, although some traits exhibited species‐specific significant relationships with environmental factors.Foliar functional traits vary idiosyncratically and species express diverse combinations of leaf traits to achieve fitness. Leaf spectroscopy offers an effective approach to quantify intra‐species trait variation and covariation, and potentially could be used to improve the characterization of vegetation in Earth system models.more » « less
- 
            Abstract Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species’ strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range. We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C3 or C4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species’ average mean annual temperature and annual precipitation across its range as a function of CSR scores. Values for competitiveness were higher in C4 species than in C3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation. The findings presented here demonstrate that CSR classification of functional strategies based on leaf traits matches expectations for the adaptations of grass species that underlie lifespan, photosynthetic type, naturalization and climate.more » « less
- 
            Plant traits are useful for predicting how species may respond to environmental change and/or influence ecosystem properties. Understanding the extent to which traits vary within species and across climatic gradients is particularly important for understanding how species may respond to climate change. We explored whether climate drives spatial patterns of intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined distribution across six continents. We tested the hypothesis that the sensitivity (i.e. slope) of intraspecific trait responses to climate across space would be related to the species' typical form and function (e.g. leaf economics, stature and lifespan). We observed both positive and negative intraspecific trait responses to climate with the distribution of slope coefficients across species straddling zero for precipitation, temperature and climate seasonality. As hypothesized, variation in slope coefficients across species was partially explained by leaf economics and lifespan. For example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions with high precipitation seasonality (PS). Thus, while the influence of climate on trait expression may at first appear idiosyncratic, variation in trait–climate slope coefficients is at least partially explained by the species' typical form and function. Overall, our results suggest that a species' mean location along one axis of trait variation (e.g. leaf economics) could influence how traits along a separate axis of variation (e.g. plant size) respond to spatial variation in climate.more » « less
- 
            Abstract Does drought stress in temperate grasslands alter the relationship between plant structure and function? Here we report data from an experiment focusing on growth form and species traits that affect the critical functions of water‐ and nutrient‐use efficiency in prairie and pasture plant communities. A total of 139 individuals of 12 species (11 genera and four families) were sampled in replicated plots maintained for three years across a 520 km latitudinal gradient in the Pacific Northwest, USA. Rain exclusion did not alter the interspecific relationship between foliar traits and stoichiometry or intrinsic water‐use efficiency (iWUE). Rain exclusion reduced iWUE in grasses, an effect was primarily species‐specific, although leaf morphology, life history strategy, and phylogenetic distance predicted iWUE for all 12 species when analyzed together. Variation in specific leaf area explained most of the variation in iWUE between different functional groups, with annual forbs and annual grasses at opposite ends of the resource‐use spectrum. Our findings are consistent with expected trait‐driven tradeoffs between productivity and resource‐use efficiency, and provide insight into strategies for the sustainable use and conservation of temperate grasslands.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
