From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration–approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle–targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.
more »
« less
In Vivo Cytosolic Delivery of Biomolecules into Neurons for Super‐Resolution Imaging and Genome Modification
Abstract Efficient delivery of biomolecules into neurons has significant impacts on therapeutic applications in the central nervous system (CNS) and fundamental neuroscience research. Existing viral and non‐viral delivery methods often suffer from inefficient intracellular access due to the endocytic pathway. Here, a neuron‐targeting and direct cytosolic delivery platform is discovered by using a 15‐amino‐acid peptide, termed the N1 peptide, which enables neuron‐specific targeting and cytosolic delivery of functional biomolecules. The N1 peptide initially binds hyaluronan in the extracellular matrix and subsequently passes the membrane of neurons without being trapped into endosome. This mechanism facilitates the efficient delivery of cell‐impermeable and photo‐stable fluorescent dye for super‐resolution imaging of dendritic spines, and functional proteins, such as Cre recombinase, for site‐specific genome modification. Importantly, the N1 peptide exhibits robust neuronal specificity across diverse species, including mice, rats, tree shrews, and zebra finches. Its targeting capability is further demonstrated through various administration routes, including intraparenchymal, intrathecal, and intravenous (i.v.) injections after blood‐brain barrier (BBB) opening with focused ultrasound (FUS). These findings establish the N1 peptide as a versatile and functional platform with significant potential for bioimaging and advanced therapeutic applications.
more »
« less
- Award ID(s):
- 2123971
- PAR ID:
- 10585383
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Science
- Volume:
- 12
- Issue:
- 25
- ISSN:
- 2198-3844
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extracellular vesicle (EV)-mediated transfer of biomolecules plays an essential role in intercellular communication and may improve targeted drug delivery. In the past decade, various approaches to EV surface modification for targeting specific cells or tissues have been proposed, including genetic engineering of parental cells or postproduction EV engineering. However, due to technical limitations, targeting moieties of engineered EVs have not been thoroughly characterized. Here, we report the bioluminescence resonance energy transfer (BRET) EV reporter, PalmReNL-based dual-reporter platform for characterizing the cellular uptake of tumor-homing peptide (THP)-engineered EVs, targeting PDL1, uPAR, or EGFR proteins expressed in MDA-MB-231 breast cancer cells, simultaneously by bioluminescence measurement and fluorescence microscopy. Bioluminescence analysis of cellular EV uptake revealed the highest binding efficiency of uPAR-targeted EVs, whereas PDL1-targeted EVs showed slower cellular uptake. EVs engineered with two known EGFR-binding peptides via lipid nanoprobes did not increase cellular uptake, indicating that designs of EGFR-binding peptide conjugation to the EV surface are critical for functional EV engineering. Fluorescence analysis of cellular EV uptake allowed us to track individual PalmReNL-EVs bearing THPs in recipient cells. These results demonstrate that the PalmReNL-based EV assay platform can be a foundation for high-throughput screening of tumor-targeted EVs.more » « less
-
Abstract Therapeutic antibodies, due to their high affinity and specificity toward their biological targets, may demonstrate reduced harmful side effects compared with traditional drug moieties. While most of the as‐yet clinically approved antibody therapeutics have targeted extracellular or membrane‐bound domains, the ability to target intracellular antigens with antibodies opens up tremendous opportunities for imaging, diagnosis, and therapeutic applications. Generally, delivery concerns have limited the ability to target intracellular antigens, as many antibodies cannot easily cross the cell membrane due to their size and surface chemistry. Delivery platforms have been explored to address this issue, including physical methods, fusion protein/peptide techniques, and synthetic carrier‐based systems. This review summarizes the progress of carrier‐based intracellular antibody delivery systems employing synthetic lipids, polymers, and inorganic nanomaterials. Antibodies targeting various epitopes have been loaded through adsorption, conjugation, or physical encapsulation strategies. Successful intracellular deliveries have been demonstrated largely through fluorescence imaging using dye‐labeled antibody cargos. Specific synthetic delivery platforms have great potential for ex vivo and in vivo therapeutic applications. Challenges and opportunities are further discussed for material scientists to explore in this research area.more » « less
-
Abstract Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.more » « less
-
Abstract Recently, targeted degradation has emerged as a powerful therapeutic modality. Relying on “event-driven” pharmacology, proteolysis targeting chimeras (PROTACs) can degrade targets and are superior to conventional inhibitors against undruggable proteins. Unfortunately, PROTAC discovery is limited by warhead scarcity and laborious optimization campaigns. To address these shortcomings, analogous protein-based heterobifunctional degraders, known as bioPROTACs, have been developed. Compared to small-molecule PROTACs, bioPROTACs have higher success rates and are subject to fewer design constraints. However, the membrane impermeability of proteins severely restricts bioPROTAC deployment as a generalized therapeutic modality. Here, we present an engineered bioPROTAC template able to complex with cationic and ionizable lipids via electrostatic interactions for cytosolic delivery. When delivered by biocompatible lipid nanoparticles, these modified bioPROTACs can rapidly degrade intracellular proteins, exhibiting near-complete elimination (up to 95% clearance) of targets within hours of treatment. Our bioPROTAC format can degrade proteins localized to various subcellular compartments including the mitochondria, nucleus, cytosol, and membrane. Moreover, substrate specificity can be easily reprogrammed, allowing modular design and targeting of clinically-relevant proteins such as Ras, Jnk, and Erk. In summary, this work introduces an inexpensive, flexible, and scalable platform for efficient intracellular degradation of proteins that may elude chemical inhibition.more » « less
An official website of the United States government
