skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infrared signature of the hydroperoxyalkyl intermediate (·QOOH) in cyclohexane oxidation: An isomer-resolved spectroscopic study
Infrared (IR) action spectroscopy is utilized to characterize carbon-centered hydroperoxy-cyclohexyl radicals (·QOOH) transiently formed in cyclohexane oxidation. The oxidation pathway leads to three nearly degenerate ·QOOH isomers, β-, γ-, and δ-QOOH, which are generated in the laboratory by H-atom abstraction from the corresponding ring sites of the cyclohexyl hydroperoxide (CHHP) precursor. The IR spectral features of jet-cooled and stabilized ·QOOH radicals are observed from 3590 to 7010 cm−1 (∼10–20 kcal mol−1) at energies in the vicinity of the transition state (TS) barrier leading to OH radicals that are detected by ultraviolet laser-induced fluorescence. The experimental approach affords selective detection of β-QOOH, arising from its significantly lower TS barrier to OH products compared to γ and δ isomers, which results in rapid unimolecular decay and near unity branching to OH products. The observed IR spectrum of β-QOOH includes fundamental and overtone OH stretch transitions, overtone CH stretch transitions, and combination bands involving OH or CH stretch with lower frequency modes. The assignment of β-QOOH spectral features is guided by anharmonic frequencies and intensities computed using second-order vibrational perturbation theory. The overtone OH stretch (2νOH) of β-QOOH is shifted only a few wavenumbers from that observed for the CHHP precursor, yet they are readily distinguished by their prompt vs slow dissociation rates to OH products.  more » « less
Award ID(s):
2102626
PAR ID:
10585482
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AiP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
3
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydroperoxyalkyl radicals (˙QOOH) are transient intermediates in the atmospheric oxidation of volatile organic compounds and combustion of hydrocarbon fuels in low temperature (<1000 K) environments. The carbon-centered ˙QOOH radicals are a critical juncture in the oxidation mechanism, but have generally eluded direct experimental observation of their structure, stability, and dissociation dynamics. Recently, this laboratory demonstrated that a prototypical ˙QOOH radical [˙CH 2 (CH 3 ) 2 COOH] can be synthesized by an alternative route, stabilized in a pulsed supersonic expansion, and characterized by its infrared (IR) spectroscopic signature and unimolecular dissociation rate to OH radical and cyclic ether products. The present study focuses on a partially deuterated ˙QOOD analog ˙CH 2 (CH 3 ) 2 COOD, generated in the laboratory by H-atom abstraction from partially deuterated tert -butyl hydroperoxide, (CH 3 ) 3 COOD. IR spectral features associated with jet-cooled and isolated ˙QOOD radicals are observed in the vicinity of the transition state (TS) barrier leading to OD radical and cyclic ether products. The overtone OD stretch (2 ν OD ) of ˙QOOD is identified by IR action spectroscopy with UV laser-induced fluorescence detection of OD products. Direct time-domain measurement of the unimolecular dissociation rate for ˙QOOD (2 ν OD ) extends prior rate measurements for ˙QOOH. Partial deuteration results in a small increase in the TS barrier predicted by high level electronic structure calculations due to changes in zero-point energies; the imaginary frequency is unchanged. Comparison of the unimolecular decay rates obtained experimentally with those predicted theoretically for both ˙QOOH and ˙QOOD confirm that unimolecular decay is enhanced by heavy-atom tunneling involving simultaneous O–O bond elongation and C–C–O angle contraction along the reaction pathway. 
    more » « less
  2. The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (C6H11O2), building on higher-level reference calculations for the smaller ethane oxidation (C2H5O2) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion. 
    more » « less
  3. An IR–vacuum ultraviolet (VUV) ion-dip spectroscopy method is utilized to examine the IR spectrum of acetaldehyde oxide (CH3CHOO) in the overtone CH stretch (2νCH) spectral region. IR activation creates a depletion of the ground state population that reduces the VUV photoionization signal on the parent mass channel. IR activation of the more stable and populated syn-CH3CHOO conformer results in rapid unimolecular decay to OH + vinoxy products and makes the most significant contribution to the observed spectrum. The resultant IR–VUV ion-dip spectrum of CH3CHOO is similar to that obtained previously for syn-CH3CHOO using IR action spectroscopy with UV laser-induced fluorescence detection of OH products. The prominent IR features at 5984 and 6081 cm−1 are also observed using UV + VUV photoionization of OH products. Complementary theoretical calculations utilizing a general implementation of second-order vibrational perturbation theory provide new insights on the vibrational transitions that give rise to the experimental spectrum in the overtone CH stretch region. The introduction of physically motivated small shifts of the harmonic frequencies yields remarkably improved agreement between experiment and theory in the overtone CH stretch region. The prominent features are assigned as highly mixed states with contributions from two quanta of CH stretch and/or a combination of CH stretch with an overtone in mode 4. The generality of this approach is demonstrated by applying it to three different levels of electronic structure theory/basis sets, all of which provide spectra that are virtually indistinguishable despite showing large deviations prior to introducing the shifts to the harmonic frequencies. 
    more » « less
  4. Unimolecular decay of the formaldehyde oxide (CH2OO) Criegee intermediate proceeds via a 1,3 ring-closure pathway to dioxirane and subsequent rearrangement and/or dissociation to many products including hydroxyl (OH) radicals that are detected. Vibrational activation of jet-cooled CH2OO with two quanta of CH stretch (17-18 kcal mol-1) leads to unimolecular decay at an energy significantly below the transition state barrier of 19.46  0.25 kcal mol-1, refined utilizing a high-level electronic structure method HEAT-345(Q)Λ. The observed unimolecular decay rate of 1.6 +/- 0.4 x 106 s-1 is two orders of magnitude slower than that predicted by statistical unimolecular reaction theory using several different models for quantum mechanical tunneling. The nonstatistical behavior originates from excitation of a CH stretch vibration that is orthogonal to the heavy atom motions along the reaction coordinate and slow intramolecular vibrational energy redistribution due to the sparse density of states. 
    more » « less
  5. Environmentally ubiquitous manganese (Mn) oxides play important roles in geochemical element redox cycling. They can be formed by both biotic and abiotic Mn2+(aq) oxidation processes. We recently observed photochemically-assisted abiotic oxidation of Mn2+(aq) to δ-MnO2 nanosheets during nitrate photolysis. Mn2+ was mainly oxidized by superoxide radicals, while hydroxyl radicals (•OH) contributed little to Mn oxidation. However, unexpected abiotic Mn2+ oxidation was observed in the presence of tert-butyl alcohol (TBA) that was added to scavenge •OH. TBA, one of the most common •OH scavengers, has been thought to be able to completely scavenge •OH, leaving less reactive products that do not participate in further redox reactions in the system. However, we discovered that TBA was not an inert agent in scavenging •OH. Secondary peroxyl radicals (ROO•) were produced from the chain reactions between TBA and •OH, facilitating the oxidation of Mn2+ to MnO2(s). These findings can also be applied to other alcohol scavengers, such as methanol, ethanol, and propanol. In addition, ROO• can be produced by the reaction between •OH and unsaturated organic matter in natural environments. This study helps understand the occurrences of Mn oxides in the environment, and it provides new insights into the oxidation pathways of other heavy metals ions (Fe2+, As3+, and Cr3+) by ROO•. 
    more » « less