skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 27, 2026

Title: Dopaminergic Central Neurons and Peripheral Sensory Systems in Pteropod and Nudibranch Molluscs
ABSTRACT In Euthyneuran molluscs, the distribution and plethora of dopamine (DA) functions are likely coupled to the feeding ecology with a broad spectrum of modifications both in the central and peripheral neural systems. However, studies of benthic grazers currently dominate the analysis of DA‐mediated signaling, whereas adaptations to pelagic lifestyles and other feeding strategies are unknown. Here, we characterize the distribution of central and peripheral neurons in representatives of distinct ecological groups: the pelagic predatory pteropodClione limacina(Pteropoda, Gymnosomata) and its prey —Limacina helicina(Pteropoda, Thecosomata), as well as the plankton eaterMelibe leonina(Nudipleura, Nudibranchia). By using tyrosine hydroxylase immunoreactivity as a reporter, we mapped their dopaminergic systems. Across all studied species, despite their differences in ecology, small numbers of dopaminergic neurons in the central ganglia contrast to an incredible density of these neurons in the peripheral nervous system, primarily representing sensory‐like cells, which are predominantly concentrated in the chemotactic areas and project afferent axons to the central nervous system. Combined with tubulin immunoreactivity, this study illuminates the complexity of sensory signaling and peripheral neural systems in Euthyneuran molluscs with lineage‐specific adaptations across different taxonomical and ecological groups.  more » « less
Award ID(s):
2341882
PAR ID:
10585547
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
533
Issue:
5
ISSN:
0021-9967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross‐reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems ofBiomphalaria alexandrina. The results revealed KLH‐like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH‐LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH‐LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH‐LIR cells did not co‐localize with tyrosine hydroxylase (TH)‐LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH‐like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross‐reactivity. In addition, this study is the first to describe neuronal cross‐reactivity with KLH inBiomphalaria, which could provide a substrate for host‐parasite interactions with a parasitic trematode,Schistosoma. 
    more » « less
  2. Abstract Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control inAplysia californica. Using the Synthetic Nervous System framework, we developed a model ofAplysiafeeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding. 
    more » « less
  3. Abstract Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusaAglantha digitaleis arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems inAglantha, summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti‐α‐tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements inAglanthawith two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional “annulus‐type” central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within theAglanthalineage (including giant axons innervating striated muscles) strongly support an extensive and wide‐spread parallel evolution of integrative and effector systems across Metazoa. 
    more » « less
  4. Abstract To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract‐tracing, and intracellular neuronal recording, we address this question in a sound‐producing and a weakly electric species of synodontid catfish,Synodontis grandiops, andSynodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species‐specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa. 
    more » « less
  5. The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the population suffer nerve degeneration or peripheral damage. For example, over 40% of patients with diabetes or undergoing chemotherapy develop peripheral neuropathies. Despite this, there are major gaps in the knowledge of human PNS development and therefore, there are no available treatments. Familial Dysautonomia (FD) is a devastating disorder that specifically affects the PNS making it an ideal model to study PNS dysfunction. FD is caused by a homozygous point mutation in ELP1 leading to developmental and degenerative defects in the sensory and autonomic lineages. We previously employed human pluripotent stem cells (hPSCs) to show that peripheral sensory neurons (SNs) are not generated efficiently and degenerate over time in FD. Here, we conducted a chemical screen to identify compounds able to rescue this SN differentiation inefficiency. We identified that genipin, a compound prescribed in Traditional Chinese Medicine for neurodegenerative disorders, restores neural crest and SN development in FD, both in the hPSC model and in a FD mouse model. Additionally, genipin prevented FD neuronal degeneration, suggesting that it could be offered to patients suffering from PNS neurodegenerative disorders. We found that genipin crosslinks the extracellular matrix, increases the stiffness of the ECM, reorganizes the actin cytoskeleton, and promotes transcription of YAP-dependent genes. Finally, we show that genipin enhances axon regeneration in an in vitro axotomy model in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system, CNS). Our results suggest genipin can be used as a promising drug candidate for treatment of neurodevelopmental and neurodegenerative diseases, and as a enhancer of neuronal regeneration. 
    more » « less