skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale : Insights from the advanced hydrozoan
Abstract Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusaAglantha digitaleis arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems inAglantha, summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti‐α‐tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements inAglanthawith two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional “annulus‐type” central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within theAglanthalineage (including giant axons innervating striated muscles) strongly support an extensive and wide‐spread parallel evolution of integrative and effector systems across Metazoa.  more » « less
Award ID(s):
1645219 1548121
PAR ID:
10457665
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
528
Issue:
7
ISSN:
0021-9967
Page Range / eLocation ID:
p. 1231-1254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ctenophora is an early‐branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals. However, despite the profound diversity among ctenophores, basal neuroanatomical data are limited to representatives of two genera. Here, we describe the organization of neuromuscular systems in eight ctenophore species focusing onEuplokamis dunlapae—the representative of the lineage sister to all other ctenophores. Cydippids (Hormiphora hormiphoraandDryodora glandiformis) and lobates (Bolinopsis infundibulumandMnemiopsis leidyi) were used as reference platforms to cover both morphological and ecological diversity within the phylum. We show that even with substantial environmental differences, the basal organization of neural systems is conserved among ctenophores. In all species, we detected two distributed neuronal subsystems: the subepithelial polygonal network and the mesogleal elements. Nevertheless, each species developed specific innovations in neural, muscular, and receptor systems. Most notableEuplokamis‐specific features are the following: (a) Comb nerves with giant axons. These nerves directly coordinate the rapid escape response bypassing the central integrative structure known as the aboral sensory organ. (b) Neural processes in tentacles along the rows of “boxes” providing structural support and located under striated muscles. (c) Radial muscles that cross the mesoglea and connect the outer wall to the aboral canal. (d) Flat muscles, encircling each meridional canal. Also, we detected a structurally different rectangular neural network in the feeding lobes of Lobata (Mnemiopsis/Bolinopsis) but not in other species. The described lineage‐specific innovations can be used for future single‐cell atlases of ctenophores and analyses of neuronal evolution in basal metazoans. 
    more » « less
  2. Abstract Ctenophores are descendants of an early branching basal metazoan lineage, which may have evolved neurons and muscles independently from other animals.Mnemiopsisis one of the important reference ctenophore species. However, little is known about its neuromuscular organization. Here, we mapped and tracked the development of the neural and muscular elements in the early hatching cydippid larvae, as well as adultMnemiopsis leidyi. The overall development of the neuromuscular system inMnemiopsiswas very similar toPleurobrachia bachei, although inMnemiopsisthe entire process occurred significantly faster. The subepithelial neural cells were observed immediately after hatching. This population consisted of a dozen of separated individual neurons with short neurites. In about 2 days, when their neurites grew significantly longer and connected to their neighbors, they began to form a canonical polygonal subepithelial network. Mesogleal neural elements prominent in all studied adult ctenophores were not detectable inMnemiopsislarvae but were clearly labeled in closely related Lobata speciesBolinopsis infundibulum. Hatched larvae also had putative mechanoreceptors with long stereocilia and approximately two dozen muscle cells. In adultMnemiopsis,the feeding lobes and auricles contained two distinct populations of neurons and neural ensembles that were not observed in other ctenophore lineages and likely represented elaborate neuronal innovations characteristic for the clade Lobata and their lifestyles. 
    more » « less
  3. Abstract Although, neurosensory systems might have evolved independently in ctenophores, very little is known about their organization and functions. Most ctenophores are pelagic and deep‐water species and cannot be bred in the laboratory. Thus, it is not surprising that neuroanatomical data are available for only one genus within the group—Pleurobrachia. Here, using immunohistochemistry and scanning electron microscopy, we describe the organization of two distinct neural subsystems (subepithelial and mesogleal) and the structure of different receptor types in the comb jellyBeroe abyssicola—the voracious predator from North Pacific. A complex subepithelial neural network ofBeroe, with five receptor types, covers the entire body surface and expands deep into the pharynx. Three types of mesogleal neurons are comparable to the cydippidPleurobrachia. The predatory lifestyle ofBeroeis supported by the extensive development of ciliated and muscular structures including the presence of giant muscles and feeding macrocilia. The obtained cell‐type atlas illustrates different examples of lineage‐specific innovations within these enigmatic marine animals and reveals the remarkable complexity of sensory and effector systems in this clade of basal Metazoa. 
    more » « less
  4. Abstract Phenotypic features define feeding selectivity in planktonic predators and therefore determine energy flow through food webs. In current‐feeding cnidarian hydromedusae, swimming and predation are coupled such that swimming also brings prey into contact with feeding structures. Fluid mechanical disturbances may initiate escape responses by flow‐sensing prey. Previous studies have not considered how fluid signals define the trophic niche of current‐feeding gelatinous predators. We used the hydromedusaClytia gregariato determine (1) how passive (sinking) and active (swimming) feeding behavior affects pre‐encounter responses of prey to the medusae‐induced fluid motion, and (2) how prey responses affect the medusae's ingestion efficiencies. Videography of the predation process showed that passive prey such as invertebrate larvae were ingested during both feeding behaviors, whereas flow‐sensing prey such as copepods escaped the predator's active feeding behavior, but were unable to detect the predator's passive sinking behavior and were ingested (KWX2= 19.8246, df = 4,p < 0.001). Flow visualizations using particle image velocimetry (PIV) showed fluid deformation values during passive feeding below threshold values that trigger escape responses of copepods. To address whether fluid signals mediate prey capture, we compared fluid signals produced by three hydromedusae with different diets.Aequorea victoriaandMitrocoma cellulariaproduced higher deformation thanC. gregaria(two‐way ANOVA,F2,52= 5.532,p= 0.007), which explains their previously documented negative selection for flow‐sensing prey like copepods. Through the analysis of hydromedusan feeding behaviors and pre‐encounter prey escapes, we provide evidence that fluid signatures shape the trophic niches of gelatinous predators. 
    more » « less
  5. Abstract Serotonergic neurons produce extensively branched axons that fill most of the central nervous system, where they modulate a wide variety of behaviors. Many behavioral disorders have been correlated with defective serotonergic axon morphologies. Proper behavioral output therefore depends on the precise outgrowth and targeting of serotonergic axons during development. To direct outgrowth, serotonergic neurons utilize serotonin as a signaling molecule prior to it assuming its neurotransmitter role. This process, termed serotonin autoregulation, regulates axon outgrowth, branching, and varicosity development of serotonergic neurons. However, the receptor that mediates serotonin autoregulation is unknown. Here we asked if serotonin receptor 5‐HT1A plays a role in serotonergic axon outgrowth and branching. Using culturedDrosophilaserotonergic neurons, we found that exogenous serotonin reduced axon length and branching only in those expressing 5‐HT1A. Pharmacological activation of 5‐HT1A led to reduced axon length and branching, whereas the disruption of 5‐HT1A rescued outgrowth in the presence of exogenous serotonin. Altogether this suggests that 5‐HT1A is a serotonin autoreceptor in a subpopulation of serotonergic neurons and initiates signaling pathways that regulate axon outgrowth and branching duringDrosophiladevelopment. 
    more » « less