skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 17, 2026

Title: Hyperboloidal approach to quasinormal modes
Oscillations of black hole spacetimes exhibit divergent behavior near the bifurcation sphere and spatial infinity. In contrast, these oscillations remain regular when evaluated near the event horizon and null infinity. The hyperboloidal approach provides a natural framework to bridge these regions smoothly, resulting in a geometric regularization of time-harmonic oscillations, known as quasinormal modes (QNMs). This review traces the development of the hyperboloidal approach to QNMs in asymptotically flat spacetimes, emphasizing both the physical motivation and recent advancements in the field. By providing a geometric perspective, the hyperboloidal approach offers an elegant framework for understanding black hole oscillations, with implications for improving numerical simulations, stability analysis, and the interpretation of gravitational wave signals.  more » « less
Award ID(s):
2309084
PAR ID:
10585625
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Physics
Volume:
12
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract General relativity, as a diffeomorphism-invariant theory, allows the description of physical phenomena in a wide variety of coordinate systems. In the presence of boundaries, such as event horizons and null infinity, time coordinates must be carefully adapted to the global causal structure of spacetime to ensure a computationally efficient description. Horizon-penetrating time is used to describe the dynamics of infalling matter and radiation across the event horizon, while hyperboloidal time is used to study the propagation of radiation toward the idealized observer at null infinity. In this paper, we explore the historical and mathematical connection between horizon-penetrating and hyperboloidal time coordinates, arguing that both classes of coordinates are simply regular choices of time across null horizons. We review the height-function formalism in stationary spacetimes, providing examples that may be useful in computations, such as source-adapted foliations or Fefferman–Graham–Bondi coordinates near null infinity. We discuss bridges connecting the boundaries of spacetime through a time hypersurface across null horizons, including the event horizon, null infinity, and the cosmological horizon. 
    more » « less
  2. Abstract Detailed behaviors of the modes of quantized scalar fields in the Unruh state for various eternal black holes in two dimensions are investigated. It is shown that the late-time behaviors of some of the modes of the quantum fields and of the symmetric two-point function are determined by infrared effects. The nature of these effects depends upon whether there is an effective potential in the mode equation and what form this potential takes. Here, three cases are considered, one with no potential and two with potentials that are nonnegative everywhere and are zero on the event horizon of the black hole and zero at either infinity or the cosmological horizon. Specifically, the potentials are a delta function potential and the potential that occurs for a massive scalar field in Schwarzschild–de Sitter spacetime. In both cases, scattering effects remove infrared divergences in the mode functions that would otherwise arise from the normalization process. When such infrared divergences are removed, it is found that the modes that are positive frequency with respect to the Kruskal time on the past black hole horizon approach zero in the limit that the radial coordinate is fixed and the time coordinate goes to infinity. In contrast, when there is no potential and thus infrared divergences occur, the same modes approach nonzero constant values in the late-time limit when the radial coordinate is held fixed. The behavior of the symmetric two-point function when the field is in the Unruh state is investigated for the case of a delta function potential in certain asymptotically flat black hole spacetimes in two dimensions. The removal of the infrared divergences in the mode functions results in the elimination of terms that grow linearly in time. 
    more » « less
  3. Abstract In this note, we present a synopsis of geometric symmetries for (spin 0) perturbations around (4D) black holes and de Sitter space. For black holes, we focus on static perturbations, for which the (exact) geometric symmetries have the group structure of SO(1,3). The generators consist of three spatial rotations, and three conformal Killing vectors obeying a specialmelodiccondition. The static perturbation solutions form a unitary (principal series) representation of the group. The recently uncovered ladder symmetries follow from this representation structure; they explain the well-known vanishing of the black hole Love numbers. For dynamical perturbations around de Sitter space, the geometric symmetries are less surprising, following from the SO(1,4) isometry. As is known, the quasinormal solutions form a non-unitary representation of the isometry group. We provide explicit expressions for the ladder operators associated with this representation. In both cases, the ladder structures help connect the boundary condition at the horizon with that at infinity (black hole) or origin (de Sitter space), and they manifest as contiguous relations of the hypergeometric solutions. 
    more » « less
  4. Abstract We introduceMahakala, aPython-based, modular, radiative ray-tracing code for curved spacetimes. We employ Google’sJAXframework for accelerated automatic differentiation, which can efficiently compute Christoffel symbols directly from the metric, allowing the user to easily and quickly simulate photon trajectories through non-Kerr spacetimes.JAXalso enablesMahakalato run in parallel on both CPUs and GPUs.Mahakalanatively uses the Cartesian Kerr–Schild coordinate system, which avoids numerical issues caused by the pole in spherical coordinate systems. We demonstrateMahakala’s capabilities by simulating 1.3 mm wavelength images (the wavelength of Event Horizon Telescope observations) of general relativistic magnetohydrodynamic simulations of low-accretion rate supermassive black holes. The modular nature ofMahakalaallows us to quantitatively explore how different regions of the flow influence different image features. We show that most of the emission seen in 1.3 mm images originates close to the black hole and peaks near the photon orbit. We also quantify the relative contribution of the disk, forward jet, and counterjet to 1.3 mm images. 
    more » « less
  5. A<sc>bstract</sc> As shown by Louko and Sorkin in 1995, topology change in Lorentzian signature involves spacetimes with singular points, which they called crotches. We modify their construction to obtain Lorentzian semiclassical wormholes in asymptotically AdS. These solutions are obtained by inserting crotches on known saddles, like the double-cone or multiple copies of the Lorentzian black hole. The crotches implement swap-identifications, and are classically located near an extremal surface. The resulting Lorentzian wormholes have an instanton action equal to their area, which is responsible for topological suppression in any number of dimensions. We conjecture that including such Lorentzian wormhole spacetimes is equivalent to path integrating over all mostly Euclidean smooth spacetimes. We present evidence for this by reproducing semiclassical features of the genus expansion of the spectral form factor, and of a late-time two point function, by summing over the moduli space of Lorentzian wormholes. As a final piece of evidence, we discuss the Lorentzian version of West-Coast replica wormholes. 
    more » « less