skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Bridging time across null horizons
Abstract General relativity, as a diffeomorphism-invariant theory, allows the description of physical phenomena in a wide variety of coordinate systems. In the presence of boundaries, such as event horizons and null infinity, time coordinates must be carefully adapted to the global causal structure of spacetime to ensure a computationally efficient description. Horizon-penetrating time is used to describe the dynamics of infalling matter and radiation across the event horizon, while hyperboloidal time is used to study the propagation of radiation toward the idealized observer at null infinity. In this paper, we explore the historical and mathematical connection between horizon-penetrating and hyperboloidal time coordinates, arguing that both classes of coordinates are simply regular choices of time across null horizons. We review the height-function formalism in stationary spacetimes, providing examples that may be useful in computations, such as source-adapted foliations or Fefferman–Graham–Bondi coordinates near null infinity. We discuss bridges connecting the boundaries of spacetime through a time hypersurface across null horizons, including the event horizon, null infinity, and the cosmological horizon.  more » « less
Award ID(s):
2309084
PAR ID:
10585633
Author(s) / Creator(s):
Publisher / Repository:
Springer
Date Published:
Journal Name:
General Relativity and Gravitation
Volume:
57
Issue:
4
ISSN:
0001-7701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accretion of magnetized gas on compact astrophysical objects such as black holes (BHs) has been successfully modeled using general relativistic magnetohydrodynamic (GRMHD) simulations. These simulations have largely been performed in the Kerr metric, which describes the spacetime of a vacuum and stationary spinning BH in general relativity (GR). The simulations have revealed important clues to the physics of accretion flows and jets near the BH event horizon and have been used to interpret recent Event Horizon Telescope images of the supermassive BHs M87* and Sgr A*. The GRMHD simulations require the spacetime metric to be given in horizon-penetrating coordinates such that all metric coefficients are regular at the event horizon. Only a few metrics, notably the Kerr metric and its electrically charged spinning analog, the Kerr–Newman metric, are currently available in such coordinates. We report here horizon-penetrating forms of a large class of stationary, axisymmetric, spinning metrics. These can be used to carry out GRMHD simulations of accretion on spinning, nonvacuum BHs and non-BHs within GR, as well as accretion on spinning objects described by non-GR metric theories of gravity. 
    more » « less
  2. Oscillations of black hole spacetimes exhibit divergent behavior near the bifurcation sphere and spatial infinity. In contrast, these oscillations remain regular when evaluated near the event horizon and null infinity. The hyperboloidal approach provides a natural framework to bridge these regions smoothly, resulting in a geometric regularization of time-harmonic oscillations, known as quasinormal modes (QNMs). This review traces the development of the hyperboloidal approach to QNMs in asymptotically flat spacetimes, emphasizing both the physical motivation and recent advancements in the field. By providing a geometric perspective, the hyperboloidal approach offers an elegant framework for understanding black hole oscillations, with implications for improving numerical simulations, stability analysis, and the interpretation of gravitational wave signals. 
    more » « less
  3. Abstract We investigate the Teukolsky equation in horizon-penetrating coordinates to study the behavior of perturbation waves crossing the outer horizon. For this purpose, we use the null ingoing/outgoing Eddington–Finkelstein coordinates. The first derivative of the radial equation is a Fuchsian differential equation with an additional regular singularity to the ones the radial one has. The radial functions satisfy the physical boundary conditions without imposing any regularity conditions. We also observe that the Hertz-Weyl scalar equations preserve their angular and radial signatures in these coordinates. Using the angular equation, we construct the metric perturbation for a circularly orbiting perturber around a black hole in Kerr spacetime in a horizon-penetrating setting. Furthermore, we completed the missing metric pieces due to the massMand angular momentumJperturbations. We also provide an explicit formula for the metric perturbation as a function of the radial part, its derivative, and the angular part of the solution to the Teukolsky equation. Finally, we discuss the importance of the extra singularity in the radial derivative for the convergence of the metric expansion. 
    more » « less
  4. Recent advancements in observational techniques have led to new tests of the general relativistic predictions for black-hole spacetimes in the strong-field regime. One of the key ingredients for several tests is a metric that allows for deviations from the Kerr solution but remains free of pathologies outside its event horizon. Existing metrics that have been used in the literature often do not satisfy the null convergence condition that is necessary to apply the strong rigidity theorem and would have allowed us to calculate the location of the event horizon by identifying it with an appropriate Killing horizon. This has led earlier calculations of event horizons of parametrically deformed metrics to either follow numerical techniques or simply search heuristically for coordinate singularities. We show that several of these metrics, almost by construction, are circular. We can, therefore, use the weak rigidity and Carter’s rotosurface theorem and calculate algebraically the locations of their event horizons, without relying on expansions or numerical techniques. We apply this approach to a number of parametrically deformed metrics, calculate the locations of their event horizons, and place constraints on the deviation parameters such that the metrics remain regular outside their horizons. We show that calculating the angular velocity of the horizon and the effective gravity there offers new insights into the observational signatures of deformed metrics, such as the sizes and shapes of the predicted black-hole shadows. 
    more » « less
  5. A bstract Black hole event horizons and cosmological event horizons share many properties, making it natural to ask whether our recent advances in understanding black holes generalize to cosmology. To this end, we discuss a paradox that occurs if observers can access what lies beyond their cosmological horizon in the same way that they can access what lies beyond a black hole horizon. In particular, distinct observers with distinct horizons may encode the same portion of spacetime, violating the no-cloning theorem of quantum mechanics. This paradox is due precisely to the observer-dependence of the cosmological horizon — the sharpest difference from a black hole horizon — although we will argue that the gravity path integral avoids the paradox in controlled examples. 
    more » « less