skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Highly elastic fibers in a shear flow can form double helices
Abstract The long-time behavior of highly elastic fibers in a shear flow is investigated experimentally and numerically. Characteristic attractors of the dynamics are found. It is shown that for a small ratio of bending to hydrodynamic forces, most fibers form a spinning elongated double helix, performing an effective Jeffery orbit very close to the vorticity direction. Recognition of these oriented shapes, and how they form in time, may prove useful in the future for understanding the time history of complex microstructures in fluid flows and considering processing steps for their synthesis.  more » « less
Award ID(s):
2011750
PAR ID:
10585842
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
New Journal of Physics
Date Published:
Journal Name:
New Journal of Physics
Volume:
26
Issue:
7
ISSN:
1367-2630
Page Range / eLocation ID:
073011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseGelatinous (G)‐fibers are specialized fibers that generate tensile force to bend and straighten many plant organs; this phenomenon has been intensively studied in tension wood of trees. Previous work has shown that G‐fibers are common within the stems of twining vines, but we lack the spatiotemporal developmental data required to determine whether, or how, G‐fibers contribute to the movement and/or stabilization of twining tissues. MethodsWe employed multiple histochemical approaches to characterize the formation and cell wall architecture of G‐fibers in twining and shrub phenotypes of common bean across a developmental time series. ResultsWithin an internode, G‐fibers first formed asymmetrically via differentiation of pericyclic fibers on the concave side of an existing bend and later arose erratically from the vascular cambium. G‐fibers were absent in immature and/or actively circumnutating internodes, thus validating previous reports that G‐fibers are not involved in rapid dynamic movements. Instead, G‐fibers formed in stationary internodes, where they developed (1) in an alternating asymmetric pattern, likely to support the posture maintenance of erect internodes at the base of twiners and throughout the length of shrubs or (2) on the concave side of twined internodes to stabilize their helical conformation. ConclusionsOur spatiotemporal results indicate that common bean vines form G‐fibers after an internode has fully elongated and becomes stationary, thus functioning to stabilize the posture of subtle bends and coil internodes. These results contribute to understanding how twining vines establish and maintain a grip on their host or supporting structure. 
    more » « less
  2. Abstract Protein‐based biomaterials have played a key role in tissue engineering, and additional exciting applications as self‐healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram‐positive bacteriumBacillus subtiliscan be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion‐catalyzed assembly (SCA). Secreted silk fibers form self‐healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials fromBacilluscells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories. 
    more » « less
  3. Abstract The important mechanical parameters and their hierarchy in the growth and folding of the human brain have not been thoroughly understood. In this study, we developed a multiscale mechanical model to investigate how the interplay between initial geometrical undulations, differential tangential growth in the cortical plate, and axonal connectivity form and regulate the folding patterns of the human brain in a hierarchical order. To do so, different growth scenarios with bilayer spherical models that features initial undulations on the cortex and uniform or heterogeneous distribution of axonal fibers in the white matter were developed, statistically analyzed, and validated by the imaging observations. The results showed that the differential tangential growth is the inducer of cortical folding, and in a hierarchal order, high-amplitude initial undulations on the surface and axonal fibers in the substrate regulate the folding patterns and determine the location of gyri and sulci. The locations with dense axonal fibers after folding settle in gyri rather than sulci. The statistical results also indicated that there is a strong correlation between the location of positive (outward) and negative (inward) initial undulations and the locations of gyri and sulci after folding, respectively. In addition, the locations of 3-hinge gyral folds are strongly correlated with the initial positive undulations and locations of dense axonal fibers. As another finding, it was revealed that there is a correlation between the density of axonal fibers and local gyrification index, which has been observed in imaging studies but not yet fundamentally explained. This study is the first step in understanding the linkage between abnormal gyrification (surface morphology) and disruption in connectivity that has been observed in some brain disorders such as Autism Spectrum Disorder. Moreover, the findings of the study directly contribute to the concept of the regularity and variability of folding patterns in individual human brains. 
    more » « less
  4. Abstract Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid‐state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free‐form structures from micron (∼70 µm) to centimeter scales. Firstly, sol‐gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home‐built micro‐continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µmpixel−1at a speed of 10 µm s−1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces. 
    more » « less
  5. Abstract Materials that exhibit varied optical responses to different modes of mechanical stimuli are attractive for complex sensing and adaptive functionalities. However, most mechanochromic materials are fabricated from films or fibers with limited actuation modes. Here, hollow tubes of a symmetric sheath are created using cholesteric liquid crystal elastomers (CLCEs) at the sub‐millimeter scale. The oligomeric precursor is sheared in an elastomeric microchannel to form uniform thickness, overcoming gravity effect and Plateau‐Rayleigh instability. In addition, the coloration is achieved to be faster and have higher reflectivity compared to that of solid fibers. The tube can undergo axial, circumferential, and radial strains upon extension and inflation. The combination of molecular anisotropy and geometry of the tube enables highly sensitive mechanochromic responses in both azimuthal and axial directions: inflation causes red‐to‐violet shift (≈220 nm) at a circumferential strain of 0.57. The inflation of a bent tube generates another mechanochromic mode with a higher sensitivity to strain. Finally, display of 26 alphabets is achieved using 5 tubes, of which the positions can be reconfigured, and curvature‐dependent 3D photonic skins are demonstrated from tubes wrapped around 3D objects. The multi‐mode mechanochromic tubes will find applications for soft robotics, adaptive displays, wearable sensors, and spectrometers. 
    more » « less