skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increased atom-cavity coupling through cooling-induced atomic reorganization
The strong coupling of atoms to optical cavities can improve optical lattice clocks as the cavity enables metrologically useful collective atomic entanglement and high-fidelity measurement. To this end, it is necessary to cool the ensemble to suppress motional broadening, and advantageous to maximize and homogenize the atom-cavity coupling. We demonstrate resolved Raman sideband cooling via the cavity as a method that can simultaneously achieve both goals. In 200 ms of Raman sideband cooling, we cool Yb 171 atoms to an average vibration number n x = 0.23 ( 7 ) in the tightly binding direction, resulting in 93 % optical π -pulse fidelity on the clock transition S 0 1 P 0 3 . During cooling, the atoms self-organize into locations with maximal atom-cavity coupling, which will improve quantum metrology applications. Published by the American Physical Society2024  more » « less
Award ID(s):
2317134
PAR ID:
10586038
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Physical Review Research
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
3
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has not been demonstrated or experimentally validated. Here, we present multichannel quantum defect models for highly excited Yb 174 and Yb 171 Rydberg states with L 2 . The models are developed using a combination of existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with direct measurements in an optical tweezer array. From the computed interaction potential, we identify an anomalous Förster resonance that likely degraded the fidelity of previous entangling gates in Yb 171 using F = 3 / 2 Rydberg states. We then identify a more suitable F = 1 / 2 state, and achieve a state-of-the-art controlled- gate fidelity of F = 0.994 ( 1 ) , with the remaining error fully explained by known sources. This work establishes a solid foundation for the continued development of quantum computing, simulation, and entanglement-enhanced metrology with Yb neutral atom arrays. Published by the American Physical Society2025 
    more » « less
  2. We realize a magneto-optical trap (MOT) of titanium (Ti) atoms, performing laser cooling on the 498 nm transition between the long-lived 3 d 3 ( F 4 ) 4 s a 5 F 5 metastable state and the 3 d 3 ( F 4 ) 4 p y 5 G 6 o excited state. Without the addition of any repumping light, we observe MOTs of the three stable, I = 0 bosonic isotopes, Ti 46 ,   Ti 48 , and Ti 50 . Up to 8.30 ( 26 ) × 10 5 Ti 48 atoms are trapped at a maximum density of 1.3 ( 4 ) × 10 11 cm 3 and at a temperature of 90 ( 15 ) µ K . By measuring the decay of the MOT, we constrain the leakage branching ratio of the cooling transition ( 2.5 × 10 6 ) and the two-body loss coefficient ( 2 × 10 10 cm 3 s 1 ). Our approach to laser cooling Ti can be applied to other transition metals, enabling a significant expansion of the elements that can be laser cooled. Published by the American Physical Society2025 
    more » « less
  3. A comparative vacuum ultraviolet spectroscopy study conducted at ISOLDE-CERN of the radiative decay of the Th 229 m nuclear clock isomer embedded in different host materials is reported. The ratio of the number of radiative decay photons and the number of Th 229 m embedded are determined for single crystalline CaF 2 ,   MgF 2 ,   LiSrAlF 6 , AlN, and amorphous SiO 2 . For the latter two materials, no radiative decay signal was observed and an upper limit of the ratio is reported. The radiative decay wavelength was determined in LiSrAlF 6 and CaF 2 , reducing its uncertainty by a factor of 2.5 relative to our previous measurement. This value is in agreement with the recently reported improved values from laser excitation. Published by the American Physical Society2025 
    more » « less
  4. The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of Pb 208 nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral Pb 208 Pb 208 collisions at a center-of-mass energy per nucleon pair s N N = 5.02 TeV . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of Pb 208 . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes Tl 206 , 205 , 204 . ©2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
  5. Anisotropic pair breaking close to surfaces favors the chiral A phase of the superfluid He 3 over the time-reversal invariant B phase. Confining the superfluid He 3 into a cavity of height D of the order of the Cooper pair size characterized by the coherence length ξ 0 —ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the A phase at pressures P and temperatures T where otherwise the B phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid He 4 film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral A phase is the stable superfluid phase under strong confinement over the full P T phase diagram down to a quasi-two-dimensional limit D / ξ 0 = 1 , where D = 80 nm . The planar phase, which is degenerate with the chiral A phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 to 21.0 bar leads to an empirical ansatz for temperature-dependent strong-coupling effects. We discuss how these results pave the way for the realization of the fully gapped two-dimensional p x + i p y superfluid under more extreme confinement. Published by the American Physical Society2025 
    more » « less