skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tidally Driven Intra‐Seasonal Oscillations in the Thermosphere From TIEGCM‐ICON and Connections to the Madden‐Julian Oscillation
Recent evidence has revealed that strong coupling between the lower atmosphere and the thermosphere (100 km) occurs on intra‐seasonal (IS) timescales ( 30–90 days). The Madden‐Julian Oscillation (MJO), a key source of IS variability in tropical convection and circulation, influences the generation and propagation of atmospheric tides and is believed to be a significant driver of thermospheric IS oscillations (ISOs). However, limited satellite observations in the “thermospheric gap” (100–300 km) and challenges faced by numerical models in characterizing this region have hindered a comprehensive understanding of this connection. This study uses an Ionospheric Connection Explorer (ICON)‐adapted version of the Thermosphere Ionosphere Electrodynamics General Circulation Model, incorporating lower boundary tides from Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) observations, to quantify the impact of the upward‐propagating tidal spectrum on thermospheric ISOs and elucidate connections to the MJO. Thermospheric zonal and diurnal mean zonal winds exhibit prominent ( 20 m/s) tidally driven ISOs throughout 2020–2021, largest at low latitudes near 110–150 km altitude. Correlation analyses confirm a robust connection between thermospheric ISOs, tides, and the MJO. Additionally, Hovmöller diagrams show eastward tidal propagation consistent with the MJO and concurrent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. This study demonstrates that vertically propagating tides play a crucial role in linking IS variability from the lower atmosphere to the thermosphere, with the MJO identified as a primary driver of this whole‐atmosphere teleconnection. Understanding these connections is vital for advancing our knowledge in space physics, particularly regarding the dynamics of the upper atmosphere and ionosphere  more » « less
Award ID(s):
2113411 2223930
PAR ID:
10586060
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
JGR
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
130
Issue:
1
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes ( < 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneousin situion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generatedin situ. Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due toin situtidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves. 
    more » « less
  2. This study investigates the impact of the lower‐thermospheric winter‐to‐summer circulation on the thermosphere's thermal structure and meridional circulation. Using NCAR TIE‐GCM, we compare simulations with and without the lower‐thermospheric circulation, finding that its inclusion enhances summer‐to‐winter thermospheric circulation by 40% in the summer hemisphere but decelerates it in the winter thermosphere. Meanwhile, vertical wind exhibits stronger upward motion ±30 degree latitude above 10e−6 hPa (174 km) when lower‐thermospheric circulation is incorporated. This dynamic coupling functions as an atmospheric “gear mechanism,” accelerating momentum and energy transfer to higher altitudes. Including lower‐thermospheric circulation improves agreement between the nudged run and NRLMSIS 2.1 in intra‐annual variability (IAV) of mass density. This suggests lower‐thermospheric circulation is a key factor in modulating IAV in the coupled thermosphere‐ionosphere system. This study reveals a new coupling mechanism between the lower atmosphere, thermosphere, and ionosphere, with significant implications for understanding upper‐atmospheric dynamics and improving space weather models. 
    more » « less
  3. Variability in the ionosphere during the 2020–2021 sudden stratospheric warming (SSW) is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) observations and the Whole Atmosphere Community Climate Model with thermosphere–ionosphere eXtension (WACCM-X) simulations. The unprecedented spatial–temporal sampling of the low latitude ionosphere afforded by COSMIC-2 enables investigating the short-term (<5 days) variability in the ionosphere during the SSW event. The COSMIC-2 observations reveal a reduction in the diurnal and zonal mean ionosphere total electron content (ITEC) and reduced amplitude of the diurnal variation in the ionosphere during the SSW. Enhanced ITEC amplitudes of the semidiurnal solar and lunar migrating tides and the westward propagating semidiurnal tide with zonal wavenumber 3 are also observed. The WACCM-X simulations demonstrate that these variations are driven by variability in the stratosphere–mesosphere during the 2020–2021 SSW event. The results show the impact of the 2020–2021 SSW on the mean state, diurnal, and semidiurnal variations in the ionosphere, as well as the capabilities of the COSMIC-2 mission to observe short-term variability in the ionosphere that is driven by meteorological variability in the lower atmosphere. 
    more » « less
  4. Abstract We study the dynamical and thermal roles of internal gravity waves generated in the troposphere and above using the Coupled Middle Atmosphere Thermosphere‐2 General Circulation Model. This model incorporates the whole atmosphere nonlinear spectral gravity wave parameterization and its extension to include non‐tropospheric sources. We conducted model experiments for northern summer solstice conditions, first including only tropospheric sources, then including sources localized at 50 and 90 km, and uniformly distributed over all heights. The simulated differences in mean temperature and horizontal winds demonstrate that gravity waves produce the greatest dynamical and thermal changes in the latter case compared to the localized sources. While the gravity wave drag is longitudinally uniform in the lower thermosphere, it is more localized in the upper thermosphere in all the simulations. Waves from uniformly distributed sources increase the longitudinal variability of zonal winds in the thermosphere up to 150 km. Gravity wave effects exhibit different local time variations in the lower thermosphere (100–140 km) than in the upper thermosphere. In the upper thermosphere, gravity wave effects are stronger during the day than at night. In contrast, nighttime gravity wave effects are stronger than the daytime ones in the lower thermosphere. Finally, a comparison with ICON‐MIGHTI observations shows that the model reproduces the basic structure of thermospheric winds, performing better with zonal winds than with meridional winds. Adding non‐tropospheric wave sources modifies wind structures in wave‐breaking regions, but does not improve the global statistical comparison. 
    more » « less
  5. This paper presents a study of the global medium‐scale (scales620 km) gravity wave (GW) activity (in terms of zonal wind variance) and its seasonal, local time, and longitudinal variations by employing the enhanced‐resolution (50 km) whole atmosphere model (WAMT254) and space‐based observations for geomagnetically quiet conditions. It is found that the GW hotspots produced by WAMT254 in the troposphere and stratosphere agree well with previously well‐studied orographic and nonorographic sources. In the ionosphere‐thermosphere (IT) region, GWs spread out forming latitudinal band‐like hotspots. During solstices, a primary maximum in GW activity is observed in WAMT254 and GOCE over winter mid‐high latitudes, likely associated with higher‐order waves with primary sources in polar night jet, fronts, and polar vortex. During all the seasons, the enhancement of GWs around the geomagnetic poles as observed by GOCE (at 250 km) is well captured by simulations. WAMT254 GWs in the IT region also show dependence on local time due to their interaction with migrating tides leading to diurnal and semidiurnal variations. The GWs are more likely to propagate up from the MLT region during westward/weakly eastward phase of thermospheric tides, signifying the dominance of eastward GW momentum flux in the MLT. Additionally, as a novel finding, a wavenumber‐4 signature in GW activity is predicted by WAMT254 between 6 and 12 local times in the tropics at 250 km, which propagates eastward with local time. This behavior is likely associated with the modulation of GWs by wave‐4 signal of nonmigrating tides in the lower thermospheric zonal winds. 
    more » « less