Abstract Weedy rice is a close relative of cultivated rice that devastates rice productivity worldwide. In the southern United States, two distinct strains have been historically predominant, but the 21stcentury introduction of hybrid rice and herbicide resistant rice technologies has dramatically altered the weedy rice selective landscape. Here, we use whole-genome sequences of 48 contemporary weedy rice accessions to investigate the genomic consequences of crop-weed hybridization and selection for herbicide resistance. We find that population dynamics have shifted such that most contemporary weeds are now crop-weed hybrid derivatives, and that their genomes have subsequently evolved to be more like their weedy ancestors. Haplotype analysis reveals extensive adaptive introgression of cultivated alleles at the resistance geneALS, but also uncovers evidence for convergent molecular evolution in accessions with no signs of hybrid origin. The results of this study suggest a new era of weedy rice evolution in the United States.
more »
« less
This content will become publicly available on December 2, 2025
Recent Crop‐To‐Weed Adaptive Introgression Has Reshaped the Genomic Composition and Geographical Structure of US Weedy Rice ( Oryza spp.)
ABSTRACT Weedy rice is a close relative of cultivated rice (Oryza sativa) that infests rice fields worldwide and drastically reduces yields. To combat this agricultural pest, rice farmers in the southern US began to grow herbicide‐resistant (HR) rice cultivars in the early 2000s, which permitted the application of herbicides that selectively targeted weedy rice without harming the crop. The widespread adoption of HR rice coincided with increased reliance on hybrid rice cultivars in place of traditional inbred varieties. Although both cultivated and weedy rice are predominantly self‐fertilising, the combined introductions of HR and hybrid rice dramatically altered the opportunities and selective pressure for crop‐weed hybridization and adaptive introgression. In this study, we generated genotyping‐by‐sequencing data for 178 weedy rice samples collected from across the rice growing region of the southern US; these were analysed together with previously published rice and weedy rice genome sequences to determine the recent genomic and population genetic consequences of adaptive introgression and selection for herbicide resistance in US weedy rice populations. We find a reshaped geographical structure of southern US weedy rice as well as purging of crop‐derived alleles in some weed strains of crop‐weed hybrid origin. Furthermore, we uncover evidence that related weedy rice strains have made use of different genetic mechanisms to respond to selection. Lastly, we identify widespread presence of HR alleles in both hybrid‐derived and nonadmixed samples, which further supports an overall picture of weedy rice evolution and adaptation through diverse genetic mechanisms.
more »
« less
- Award ID(s):
- 1947609
- PAR ID:
- 10586081
- Publisher / Repository:
- Wiley and Sons
- Date Published:
- Journal Name:
- Molecular Ecology
- ISSN:
- 0962-1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Convergent evolution of root system architecture in two independently evolved lineages of weedy riceSummary Root system architecture (RSA) is a critical aspect of plant growth and competitive ability. Here we used two independently evolved strains of weedy rice, a de‐domesticated form of rice, to study the evolution of weed‐associatedRSAtraits and the extent to which they evolve through shared or different genetic mechanisms.We characterised 98 two‐dimensional and three‐dimensionalRSAtraits in 671 plants representing parents and descendants of two recombinant inbred line populations derived from two weed × crop crosses. A random forest machine learning model was used to assess the degree to which root traits can predict genotype and the most diagnostic traits for doing so. We used quantitative trait locus (QTL)mapping to compare genetic architecture between the weed strains.The two weeds were distinguishable from the crop in similar and predictable ways, suggesting independent evolution of a ‘weedy’RSAphenotype. Notably, comparativeQTLmapping revealed little evidence for shared underlying genetic mechanisms.Our findings suggest that despite the double bottlenecks of domestication and de‐domestication, weedy rice nonetheless shows genetic flexibility in the repeated evolution of weedyRSAtraits. Whereas the root growth of cultivated rice may facilitate interactions among neighbouring plants, the weedy rice phenotype may minimise below‐ground contact as a competitive strategy.more » « less
-
Abstract High reproductive compatibility between crops and their wild relatives can provide benefits for crop breeding but also poses risks for agricultural weed evolution. Weedy rice is a feral relative of rice that infests paddies and causes severe crop losses worldwide. In regions of tropical Asia where the wild progenitor of rice occurs, weedy rice could be influenced by hybridization with the wild species. Genomic analysis of this phenomenon has been very limited. Here we use whole genome sequence analyses of 217 wild, weedy and cultivated rice samples to show that wild rice hybridization has contributed substantially to the evolution of Southeast Asian weedy rice, with some strains acquiring weed-adaptive traits through introgression from the wild progenitor. Our study highlights how adaptive introgression from wild species can contribute to agricultural weed evolution, and it provides a case study of parallel evolution of weediness in independently-evolved strains of a weedy crop relative.more » « less
-
ABSTRACT Herbicide resistance in agricultural weeds has become one of the greatest challenges for sustainable crop production. The repeated evolution of herbicide resistance provides an excellent opportunity to study the genetic and physiological basis of the resistance phenotype and the evolutionary responses to human‐mediated selection pressures.Lolium multiflorumis a ubiquitous weed that has evolved herbicide resistance repeatedly around the world in various cropping systems. We assembled and annotated a chromosome‐scale genome forL. multiflorumand elucidated the genetic architecture of paraquat resistance by performing quantitative trait locus analysis, genome‐wide association studies, genetic divergence analysis and transcriptome analyses from paraquat‐resistant and ‐susceptibleL. multiflorumplants. We identified two regions on chromosome 5 that were associated with paraquat resistance. These regions both showed evidence for positive selection among the resistant populations we sampled, but the effects of this selection on the genome differed, implying a complex evolutionary history. In addition, these regions contained candidate genes that encoded cellular transport functions, including a novel multidrug and toxin extrusion (MATE) protein and a cation transporter previously shown to interact with polyamines. Given thatL. multiflorumis a weed and a cultivated crop species, the genomic resources generated will prove valuable to a wide spectrum of the plant science community. Our work contributes to a growing body of knowledge on the underlying evolutionary and ecological dynamics of rapid adaptation to strong anthropogenic selection pressure that could help initiate efforts to improve weed management practices in the long term for a more sustainable agriculture.more » « less
-
SUMMARY The repeated evolution of high seed shattering during multiple independent de‐domestications of cultivated Asian rice (Oryza sativa) into weedy rice (Oryzaspp.) is a prime example of convergent evolution. Weedy rice populations converge in histological features of the abscission zone (AZ), a crucial structure for seed abscission, while ancestral cultivated rice populations exhibit varied AZ morphology and levels of shattering. However, the genetic bases of these phenotypic patterns remain unclear. We examined the expression profiles of the AZ region and its surrounding tissues at three developmental stages in two low‐shattering cultivars ofausandtemperate japonicadomesticated groups and in two genotypes of their derived high‐shattering weed groups, Blackhull Awned (BHA) and Spanish Weedy Rice (SWR), respectively. Consistent with the greater alteration of AZ morphology during the de‐domestication of SWR than BHA, fewer genes exhibited a comparable AZ‐region exclusive expression pattern between weed and crop in thetemperate japonicalineage than in theauslineage. Transcription factors related to the repression of lignin and secondary cell wall deposition, such as,OsWRKY102andOsXND‐1‐like, along with certain known shattering genes involved in AZ formation, likely played a role in maintaining AZ region identity in both lineages. Meanwhile, most genes exhibiting AZ‐region exclusive expression patterns do not overlap between the two lineages and the genes exhibiting differential expression in the AZ region between weed and crop across the two lineages are enriched for different gene ontology terms. Our findings suggest genetic flexibility in shaping AZ morphology, while genetic constraints on AZ identity determination in these two lineages.more » « less
An official website of the United States government
