Since the first phylogenetic study of the order Batrachospermales,Batrachospermumwas shown to be paraphyletic. Subsequently, sections of the genus have been methodically investigated usingDNAsequences and morphology in order to propose new genera and delineate species.BatrachospermumsectionTurfosais the last section with multiple species yet to be examined. New sequence data of specimens from Europe and the United States were combined with the sparse sequence data already available. Phylogenetic analyses usingrbcL andCOI‐5P sequences showed this section to be a well‐supported clade, distinct fromBatrachospermumsectionBatrachospermumand its segregate genera. Section Turfosais raised to the generic rank asPaludicolagen. nov. Substantial genetic variation within the genus was discovered and 12 species are recognized based onDNAsequence data as well as morphological characters and geographic distribution. The following morphological characters were applied to distinguish species: branching pattern (pseudodichotomous or irregular), whorl size (reduced or well developed), primary fascicles (curved or straight), spermatangia origin (primary or secondary fascicles), and carposporophyte arrangement (loose or dense). Previously published species were transferred to the new genus:P. turfosa,P. keratophyta,P. orthosticha,P. phangiae,andP. periploca. Seven new species are proposed as follows:P. groenbladiifrom Europe;P. communis,P. johnhallii, andP. leafensisfrom North America; andP. aquanigra,P. diamantinensis, andP. turfosiformisfrom Brazil. In addition, three unsequenced species in the section,P. bakarensis,P. gombakensis, andP. tapirensis, were transferred to the new genus.
more »
« less
Divergent synthesis of δ-valerolactones and furanones via palladium or copper-catalyzed α-hydroxycyclopropanol ring opening cyclizations
Divergent approaches were developed to synthesize δ-valerolactones or furanonesviaa palladium or copper-catalyzed α-hydroxycyclopropanol ring opening cyclizations, respectively.
more »
« less
- Award ID(s):
- 2349014
- PAR ID:
- 10586093
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 60
- Issue:
- 74
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 10112 to 10115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The problem of combiningP-values is an old and fundamental one, and the classic assumption of independence is often violated or unverifiable in many applications. There are many well-known rules that can combine a set of arbitrarily dependentP-values (for the same hypothesis) into a singleP-value. We show that essentially all these existing rules can be strictly improved when theP-values are exchangeable, or when external randomization is allowed (or both). For example, we derive randomized and/or exchangeable improvements of well-known rules like “twice the median” and “twice the average,” as well as geometric and harmonic means. ExchangeableP-values are often produced one at a time (for example, under repeated tests involving data splitting), and our rules can combine them sequentially as they are produced, stopping when the combinedP-values stabilize. Our work also improves rules for combining arbitrarily dependentP-values, since the latter becomes exchangeable if they are presented to the analyst in a random order. The main technical advance is to show that all existing combination rules can be obtained by calibrating theP-values to e-values (using an -dependent calibrator), averaging those e-values, converting to a level- test using Markov’s inequality, and finally obtainingP-values by combining this family of tests; the improvements are delivered via recent randomized and exchangeable variants of Markov’s inequality.more » « less
-
Abstract We describe convenient preparations ofN,N′‐dialkyl‐1,3‐propanedialdiminium chlorides,N,N′‐dialkyl‐1,3‐propanedialdimines, and lithiumN,N′‐dialkyl‐1,3‐propanedialdiminates in which the alkyl groups are methyl, ethyl, isopropyl, ortert‐butyl. For the dialdiminium salts, the N2C3backbone is always in thetrans‐s‐transconfiguration. Three isomers are present in solution except for thetert‐butyl compound, for which only two isomers are present; increasing the steric bulk of theN‐alkyl substituents shifts the equilibrium away from the (Z,Z) isomer in favor of the (E,Z), and (E,E) isomers. For the neutral dialdimines, crystal structures show that the methyl and isopropyl compounds adopt the (E,Z) form, whereas thetert‐butyl compound is in the (E,E) form. In aprotic solvents all four dialdimines (as well as the lithium dialdiminate salts) adoptcis‐s‐cisconformations in which there presumably is either an intramolecular hydrogen bond (or a lithium cation) between the two nitrogen atoms.more » « less
-
Summary Calcium‐dependent protein kinases (CDPKs) play vital roles in metabolic regulations and stimuli responses in plants. However, little is known about their function in grapevine.Here, we report thatVpCDPK9andVpCDPK13, two paralogousCDPKsfromVitis pseudoreticulataaccession Baihe‐35‐1, appear to positively regulate powdery mildew resistance. The transcription of them in leaves of ‘Baihe‐35‐1’ were differentially induced upon powdery mildew infection. Overexpression ofVpCDPK9‐YFPorVpCDPK13‐YFPin theV. viniferasusceptible cultivar Thompson Seedless resulted in enhanced resistance to powdery mildew (YFP, yellow fluorescent protein). This might be due to elevation of SA and ethylene production, and excess accumulation of H2O2and callose in penetrated epidermal cells and/or the mesophyll cells underneath.Ectopic expression ofVpCDPK9‐YFPin Arabidopsis resulted in varied degrees of reduced stature, pre‐mature senescence and enhanced powdery mildew resistance. However, these phenotypes were abolished inVpCDPK9‐YFPtransgenic lines impaired in SA signaling (pad4sid2) or ethylene signaling (ein2). Moreover, both of VpCDPK9 and VpCDPK13 were found to interact with and potentially phosphorylate VpMAPK3, VpMAPK6, VpACS1 and VpACS2in vivo(ACS, 1‐aminocyclopropane‐1‐carboxylic acid (ACC) synthase; MAPK, mitogen‐activated protein kinase).These results suggest thatVpCDPK9andVpCDPK13contribute to powdery mildew resistance via positively regulating SA and ethylene signaling in grapevine.more » « less
An official website of the United States government

